PSI - Issue 44

Fabio Di Trapani et al. / Procedia Structural Integrity 44 (2023) 496–503 Di Trapani et al. / Structural Integrity Procedia 00 (2022) 000–000

502

7

w and t being the width and the thickness of the equivalent strut. Substituting Eq. (4) in Eq. (3) and Eq. 3 in Eq. (2) one obtains:

⋅ w t t l N sin ⋅ ⋅

⋅ α θ µ θ ⋅ l sin

⋅ µ θ

α θ

  

  

(5)

= V N cos d ,inf

⋅ ⋅ t l N cos sin α θ =

N cos

=

µσ θ

n

w

Providing the additional shear demand as a function of the current axial force on the equivalent strut and of the contact length α l. In order to validate the reliability of Eq. (1) combined with Eq. (5), the aforementioned specimens were modelled and analyzed according to the macro-modelling approach proposed by Di Trapani et al. 2018. In Fig. 9, result of the application of the proposed analytical approach are illustrated. In particular, the macro-model predictions of the total shear demand at the ends of the columns are compared with those from the micro-model, showing a noticeable consistency despite the simple approach. As regards the contact length it was assumed α l =0.30 l and 0.4 l for l/h =1, and α l =0.25 l and 0.3 l for l/h =1.5 for the windward and leeward columns respectively.

N

w

n σ

t

t

cos N θ

inf V

θ

sin n σ θ

N

V frame V infill V tot

v τ µσ =

θ

T

l α

(a)

(b)

Fig. 8. (a) Decomposition of shear demand at the end of the columns of an infilled frame; (b) Force transfer due to frame-infill interaction.

120

120

10 20 30 40 50 60 70 80 90 100 Shear force [kN]

10 20 30 40 50 60 70 80 90 100 Shear force [kN]

S1A - Leeward column

S1A - Windward column

S1B - Leeward column

Micro-model Macro-model Macro-model + Eq. (5) S1B - Windward column

100

100

Micro-model Macro-model Macro-model + Eq. (5)

80

80

60

60

Micro-model Macro-model Macro-model + Eq. (5)

Micro-model Macro-model Macro-model + Eq (5)

40

40

Shear force [kN]

Shear force [kN]

20

20

0 5 10 15 20 25 30 35 40 Displacement [mm] 0

0 5 10 15 20 25 30 35 40 Displacement [mm] 0

0 5 10 15 20 25 30 35 40 Displacement [mm] 0

0 5 10 15 20 25 30 35 40 Displacement [mm] 0

(a)

(b)

140

140

100 120 140 160

100 120 140 160

S1C - Leeward column

S1C - Windward column

Spec. 5 - Leeward column

Spec. 5 - Windward column

120

120

100

100

80

80

20 40 60 80

20 40 60 80

Micro-model Macro-model Macro-model + Eq. (5)

60

60

Micro-model Macro-model Macro-model + Eq. (5)

Micro-model Macro-model Macro-model+Eq. (5)

Micro-model Macro-model Macro-model+Eq. (5)

40

40

Shear force [kN]

Shear force [kN]

Shear force [kN]

Shear force [kN]

20

20

0 5 10 15 20 25 30 35 40 Displacement [mm] 0

0 5 10 15 20 25 30 35 40 Displacement [mm] 0

0 5 10 15 20 25 30 35 40 Displacement [mm] 0

0 5 10 15 20 25 30 35 40 Displacement [mm] 0

(c)

(d)

140

140

10 20 30 40 50 60 70 80 90 100 Shear force [kN]

10 20 30 40 50 60 70 80 90 100 Shear force [kN]

Spec. 8 - Leeward column

Spec. 8 - Windward column

Spec. 5 - Windward column

Spec. 5 - Leeward column

120

120

100

100

80

80

Micro-model Macro-model Macro-model+Eq. (5)

Micro-model Macro-model Macro-model+Eq. (5)

60

60

Micro-model Macro-model Macro-model+Eq. (5)

Micro-model Macro-model Macro-model+Eq. (5)

40

40

Shear force [kN]

Shear force [kN]

20

20

0 5 10 15 20 25 30 35 40 Displacement [mm] 0

0 5 10 15 20 25 30 35 40 Displacement [mm] 0

0 5 10 15 20 25 30 35 40 Displacement [mm] 0

0 5 10 15 20 25 30 35 40 Displacement [mm] 0

(e)

(f)

Fig. 9. Comparison between macro-model and micro-model predictions of total shear demand at the windward and leeward column ends for Cavaleri & Di Trapani (2014) specimens: (a) S1A; (b) S1B; (c) S1C and Mehrabi & Shing (1996) specimens: (d) 5; (e) 8; (f) 9.

Made with FlippingBook flipbook maker