PSI - Issue 43

Sergiy Kotrechko et al. / Procedia Structural Integrity 43 (2023) 228–233 Author name / Structural Integrity Procedia 00 (2022) 000 – 000

233

6

4. Conclusions 1. The dependence of the incompatibilities of microplastic deformations at grain boundaries or other interfacial boundaries on plastic strain and temperature is the main reason for the influence of these factors on the intensity of cleavage nuclei generation, which is a key factor controlling the slope of the temperature dependence and its scatter limits 2. Failure to take this effect into account in conventional models of local approach leads to errors in the prediction not only of the fracture toughness values but also of the fracture probability value. In the latter case, the underestimation of the fracture probability can be about 2-4 times. This error reaches a maximum at low fracture probabilities (lower threshold value for fracture toughness). This is of crucial importance for critical structural elements (RPVs, oil and gas pipelines, etc.). Acknowledgements This work was supported by the National Academy of Sciences of Ukraine (under grant number 0121U107569). Bordet, S. R., Karstensen, A. D., Knowles, D. M., Wiesner, C. S., 2005. A new statistical local criterion for cleavage fracture in steel. Part II: application to an offshore structural steel. Engineering Fracture Mechanics 72, 453 – 474. https://doi.org/10.1016/j.engfracmech.2004.02.010 Gao, X., Dodds, R. H., Jr., 2000. Constraint effects on the ductile-to-brittle transition temperature of ferritic steels: a Weibull stress model. International Journal of Fracture 102, 43 – 69. https://doi.org/10.1023/A:1007526006632 Gao, X., Chang, G., Srivatsan, T.S., 2005, Prediction of cleavage fracture in ferritic steel: A modified Weibull stress model. Materials Science and Engineering: A 394, 210-219. https://doi.org/10.1016/j.msea.2004.11.035 Jivkov, A. P., Burgos, D. S., Ruggieri, C., Beswick, J., Savioli, R. G., James, P., Sherry, A., 2019. Use of local approaches to calculate changes in cleavage fracture toughness due to pre-straining and constraint effects. Theoretical and Applied Fracture Mechanics 104, 102380. https://doi.org/10.1016/j.tafmec.2019.102380 Kotrechko, S., 2002. Physical fundamentals of Local Approach to analysis of cleavage fracture, in: “ Transferability of Fracture Mechanical Characteristic , NATO Science Series, Series II, 78 ” , In: I. Dlouhý (Ed.). Kluwer Academic Publishers, pp. 135-150. Kotrechko, S., Strnadel, B., Dlouhý , I., 2007. Fracture toughness of cast ferritic steel applying local approach. Theoretical and Applied Fracture Mechanics 47, 171-181. https://doi.org/10.1016/j.tafmec.2006.11.008 Kotrechko, S., 2013. The key problems of local approach to cleavage fracture. Journal of Theoretical and Applied Mechanics (Warsaw) 51 (1), 75 – 89. Kotrechko, S., Mamedov, S., 2016. Multi-scale local approach to cleavage fracture and its applications, 19th European Conference on Fracture (ECF19). - Kazan, Russia, 26-31 Aug 2012. Curran Associates, Inc. 1, pp. 971 – 982. Kotrechko, S., Zatsarna, O., Kozák , V., Dlouhý , I., 2019. Threshold fracture stress: theory and application. Procedia Structural Integrity 23, 413 – 418. https://doi.org/10.1016/j.prostr.2020.01.122 Kotrechko, S., Kozák, V. , Zatsarna, O., Zimina, G., Stetsenko, N., Dlouhý, I. , 2021. Incorporation of Temperature and Plastic Strain Effects into Local Approach to Fracture. Materials 14, 6224. https://doi.org/10.3390/ma14206224 Pineau A., 2006. Development of the local approach to fracture over the past 25 years: Theory and applications. International Journal of Fracture 138, 139 – 166. https://doi.org/10.1007/s10704-006-0035-1 Pluvinage, G., Azari, Z., Kadi, N., Dlouhy, I., Kozák , V., 1999. Effect of ferritic microstructure on local damage zone distance associated with fracture near notch, Theoretical and Applied Fracture Mechanics 31, 149-156, https://doi.org/10.1016/S0167-8442(99)00009-9 Ruggieri, C., Savioli, R.G., Dodds, R.H., Jr., 2015. An engineering methodology for constraint corrections of elastic – plastic fracture toughness – Part II: Effects of specimen geometry and plastic strain on cleavage fracture predictions. Engineering Fracture Mechanics 146, 185-209. https://doi.org/10.1016/j.engfracmech.2015.06.087 Ruggieri, C., Dodds, R.H., 2018. A local approach to cleavage fracture modelling: An overview of progress and challenge for engineering applications. Engineering Fracture Mechanics 187, 381 – 403. https://doi.org/10.1016/j.engfracmech.2017.12.021 Ruggieri, C., Jivkov, A.P., 2019. A local approach incorporating the measured statistics of microcracks to assess the temperature dependence of cleavage fracture for a reactor pressure vessel steel. Procedia Structural Integrity 18, 28 – 35. https://doi.org/10.1016/j.prostr.2019.08.137 Wasiliuk, B., Petti, J.R., Dodds, R.H., 2006. Temperature dependence of Weibull stress parameters: Studies using euro-material. Engineering Fracture Mechanics 73, 1046-1059. https://doi.org/10.1016/j.engfracmech.2005.11.006 Wiesner, C.S., Goldthorpe, M.R., 1996. The effect of temperature and specimen geometry on the parameters of the ‘Local Approach’ to cleavage fracture. Journal de Physique IV France 06, C6-295 – C6-304. https://doi.org/10.1051/jp4:1996629 References Bordet, S.R., Karstensen, A.D., Knowles, D.M., Wiesner, C.S., 2005. A new statistical local criterion for cleavage fracture in steel. Part I: model presentation. Engineering Fracture Mechanics 72, 435 – 452. https://doi.org/10.1016/j.engfracmech.2004.02.009

Made with FlippingBook flipbook maker