PSI - Issue 41

Victor Rizov et al. / Procedia Structural Integrity 41 (2022) 103–114 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

107

5

The material properties, E , 1  and 2  , vary continuously in both longitudinal and transversal directions of the beam. The variation in transversal direction is written as 1 

1  h E E  

h z

2    

  

E E

 

,

(24)

2 

 

h z

2         2

  

1

1

 

 

,

(25)

1

1

2 

h

3 

 

h z

  

2

2

 

 

,

(26)

2

2

3 

h

where

2 2 h z h   

.

(27)

In formulae (24) – (27), z is the vertical centric axis of the beam,  E ,   2 are the values of E , 1  and 2  at the upper surface of the beam. The values of E , 1  and 2  at the lower surface of the beam are  E ,   1 and   2 , respectively. The parameters, 1  , 2  and 3  , govern the variation of E , 1  and 2  in transversal direction. The variation of  E ,   1 ,   2 ,  E ,   1 and   2 in longitudinal direction is expressed as   1 and

4  l E E II  

I

4 

E E

x

 

,

(28)

I

 I

1

1

II

5 

x

 

 

,

(29)

1

1

I

5 

l

 I

2

2

II

6 

x

 

 

,

(30)

2

2

I

6 

l

7  l E E E E I II I      

7 

x

,

(31)

1    II    II I 

 I

8 

x

 

1

1

,

(32)

1

8 

l

 I

9 

x

 

2

2

,

(33)

2

2

I

9 

l

where

x l   0 .

(34)   1 and

 E ,

 I E ,

 I E ,

 E ,

  1 I and

  2 I are the values of

  1 I ,

  2 I ,

  2 ,

  1 ,

In formulae (28) – (34),

 II E ,

 II E ,

 E ,

  2 at the left-hand end of the beam,

  1 II and

  2 II are the values of

  1 II ,

  2 II ,

  1 ,

5, 6, ..., 9  i are parameters governing the

 E ,

  2 at the right-hand end of the beam, i  where

  1 and

  2 ,

variation of   2 in longitudinal direction of the beam. The beam is subjected to temperature, T , that varies periodically with time as depicted in Fig. 3.The period, T T , is found as i i T t t T    1 . (35)  E ,   1 ,   2 ,  E ,   1 and

Made with FlippingBook - Online magazine maker