PSI - Issue 41
A.E.S. Pinheiro et al. / Procedia Structural Integrity 41 (2022) 60–71 Pinheiro et al. / Structural Integrity Procedia 00 (2019) 000 – 000
71
12
References Adams, R. D. (2005). Adhesive bonding: science, technology and applications. Cambridge, United Kingdom, Woodhead Publishing Limited. Adams, R. D., Comyn, J. and Wake, W. C. (1997). Structural adhesive joints in engineering. London, United Kingdom, Chapman & Hall. Adams, R. D. and Peppiatt, N. A., 1974. Stress analysis of adhesive-bonded lap joints. The Journal of Strain Analysis for Engineering Design 9(3), 185-196. ASTM-E8M-04 (2004). Standard test methods for tension testing of metallic materials [Metric]. West Conshohocken, PA, ASTM International. Barbosa, D. R., Campilho, R., Rocha, R. J. B. and Ferreira, L. R. F., 2018. Experimental and numerical assessment of tensile loaded tubular adhesive joints. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233(3), 452-464. Belingardi, G., Goglio, L. and Tarditi, A., 2002. Investigating the effect of spew and chamfer size on the stresses in metal/plastics adhesive joints. International Journal of Adhesion and Adhesives 22(4), 273-282. Campilho, R. D. S. G., Banea, M. D., Neto, J. A. B. P. and da Silva, L. F. M., 2012. Modelling of single-lap joints using cohesive zone models: Effect of the cohesive parameters on the output of the simulations. The Journal of Adhesion 88(4-6), 513-533. Campilho, R. D. S. G., Banea, M. D., Neto, J. A. B. P. and da Silva, L. F. M., 2013. Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. International Journal of Adhesion & Adhesives 44, 48-56. Campilho, R. D. S. G., Banea, M. D., Pinto, A. M. G., da Silva, L. F. M. and de Jesus, A. M. P., 2011. Strength prediction of single- and double lap joints by standard and extended finite element modelling. International Journal of Adhesion and Adhesives 31(5), 363-372. da Silva, L., Öschner, A. and Adams, R. (2018). Handbook of Adhesion Technology (2 volumes). Heidelberg, Germany, Springer. da Silva, L. F. M., das Neves, P. J. C., Adams, R. D. and Spelt, J. K., 2009a. Analytical models of adhesively bonded joints — Part I: literature survey. International Journal of Adhesion and Adhesives 29(3), 319-330. da Silva, L. F. M., das Neves, P. J. C., Adams, R. D., Wang, A. and Spelt, J. K., 2009b. Analytical models of adhesively bonded joints-Part II: comparative study. International Journal of Adhesion and Adhesives 29(3), 331-341. Das, R. R. and Pradhan, B., 2011. Finite element based design and adhesion failure analysis of bonded tubular socket joints made with laminated FRP composites. Journal of Adhesion Science and Technology 25(1-3), 41-67. Eusébio, S. M. L. and Campilho, R. D. S. G., 2019. Modelling of tubular adhesively-bonded joints by the Extended Finite Element Method. Procedia Manufacturing 41, 484-491. Faneco, T. M. S., Campilho, R. D. S. G., Silva, F. J. G. and Lopes, R. M., 2017. Strength and fracture characterization of a novel polyurethane adhesive for the automotive industry. Journal of Testing and Evaluation 45(2), 398-407. Garcia Momm, G. and Fleming, D., 2021. Analytical models for stress analysis of real-life bonded joints. The Journal of Adhesion, 1-24. Goglio, L., Rossetto, M. and Dragoni, E., 2008. Design of adhesive joints based on peak elastic stresses. International Journal of Adhesion and Adhesives 28(8), 427-435. Goland, M. and Reissner, E., 1944. The stresses in cemented joints. Journal of Applied Mechanics 66, A17 – A27. Guess, T. R., Reedy, E. and Slavin, A. M., 1995. Testing composite-to-metal tubular lap joints. Journal of Composites Technology & Research 17(2), 117-124. Hashim, S. A., Cowling, M. J. and Lafferty, S., 1998. The integrity of bonded joints in large composite pipes. International Journal of Adhesion and Adhesives 18(6), 421-429. He, X., 2011. A review of finite element analysis of adhesively bonded joints. International Journal of Adhesion and Adhesives 31(4), 248-264. Heidarpour, F., Farahani, M. and Ghabezi, P., 2018. Experimental investigation of the effects of adhesive defects on the single lap joint strength. International Journal of Adhesion and Adhesives 80, 128-132. Nayeb-Hashemi, H., Rossettos, J. and Melo, A., 1997. Multiaxial fatigue life evaluation of tubular adhesively bonded joints. International Journal of Adhesion and Adhesives 17(1), 55-63. Neto, J., Campilho, R. D. and Da Silva, L., 2012. Parametric study of adhesive joints with composites. International Journal of Adhesion and Adhesives 37, 96-101. Petrie, E. M. (2000). Handbook of adhesives and sealants. New York, USA, McGraw-Hill. Pugno, N. and Carpinteri, A. J. J. A. M., 2003. Tubular adhesive joints under axial load. Journal of Applied Mechanics 70(6), 832-839. Quispe Rodríguez, R., Portilho de Paiva, W., Sollero, P., Bertoni Rodrigues, M. R. and Lima de Albuquerque, É., 2012. Failure criteria for adhesively bonded joints. International Journal of Adhesion and Adhesives 37, 26-36. Rocha, R. J. B. and Campilho, R. D. S. G., 2018. Evaluation of different modelling conditions in the cohesive zone analysis of single-lap bonded joints. The Journal of Adhesion 94(7), 562-582. Sato, C. and Ikegami, K., 1999. Strength of adhesively-bonded butt joints of tubes subjected to combined high-rate loads. The Journal of Adhesion 70(1-2), 57-73. Sawa, T., Nakano, Y. and Temma, K., 1987. A stress analysis of butt adhesive joints under torsional loads. The Journal of Adhesion 24(2-4), 245 258. Sekercioglu, T., 2007. Strength based reliability of adhesively bonded tubular lap joints. Materials & Design 28(6), 1914-1918. Volkersen, O., 1938. Die nietkraftverteilung in zugbeanspruchten nietverbindungen mit konstanten laschenquerschnitten. Luftfahrtforschung 15, 41-47. Wei, X., Shen, H.-S. and Wang, H., 2022. Fracture failure prediction for composite adhesively bonded double lap joints by an experiment-based approach. International Journal of Adhesion and Adhesives 114, 103110. Woelke, P. B., Shields, M. D., Abboud, N. N. and Hutchinson, J. W., 2013. Simulations of ductile fracture in an idealized ship grounding scenario using phenomenological damage and cohesive zone models. Computational Materials Science 80, 79-95.
Made with FlippingBook - Online magazine maker