PSI - Issue 41
4
Linardatos/ Structural Integrity Procedia 00 (2022) 000–000
Dionysios Linardatos et al. / Procedia Structural Integrity 41 (2022) 82–86
85
4. Conclusions The effect of temperature upon ZnSe:Te luminescence output was examined and compared to that of CaF 2 :Eu single crystals. Crystal samples were irradiated with X-rays and the luminescence efficiency was measured under temperatures ranging from 20°C (room temperature) to 140°C. The luminescence output values of ZnSe:Te showed a 82% decrease from room temperature to the maximum examined. Temperature had a similar effect upon the luminescence of CaF 2 :Eu, in which the signal dropped from room to the maximum examined temperature by 79%. Knowledge of the crystal’s thermal response is important for applications in which temperature and X-ray flux affects systems performance.
Acknowledgments The 2 nd Mediterranean Conference on Fracture and Structural Integrity, MedFract2 (February 14-16, 2022, Catania – Italy & Web) publication fees were funded by the University of West Attica, Greece.
References Advatech UK, 2022. Advatech UK - ZnSe:Te [WWW Document]. URL https://www.advatech-uk.co.uk/znse_te.html (accessed 3.4.22). Bisong, M.S., Mikhailov, V.E., Lepov, V.V., Makharova, S.N., 2019. Microstructure influence on crack resistance of steels welded structures operated in an extremely cold environment. Procedia Struct. Integr., 1st International Conference on Integrity and Lifetime in Extreme Environment (ILEE-2019) 20, 37–41. https://doi.org/10.1016/j.prostr.2019.12.112 Chen, M.C., 2008. Double beta decay: Scintillators. J. Phys. Conf. Ser. 136, 022035. https://doi.org/10.1088/1742-6596/136/2/022035 Cho, Y.H., Park, S.H., Lee, W.G., Ha, J.H., Kim, H.S., Starzinskiy, N., Lee, D.H., Park, S., Kim, Y.K., 2008. Comparative Study of a CsI and a ZnSe(Te/O) Scintillation Detector’s Properties for a Gamma-ray Measurement. J. Nucl. Sci. Technol. 45, 534–537. https://doi.org/10.1080/00223131.2008.10875909 Dafinei, I., Nagorny, S., Pirro, S., Cardani, L., Clemenza, M., Ferroni, F., Laubenstein, M., Nisi, S., Pattavina, L., Schaeffner, K., di Vacri, M.L., Boyarintsev, A., Breslavskii, I., Galkin, S., Lalayants, A., Rybalka, I., Zvereva, V., Enculescu, M., 2017. Production of 82 Se enriched Zinc Selenide (ZnSe) crystals for the study of neutrinoless double beta decay. J. Cryst. Growth 475, 158–170. https://doi.org/10.1016/j.jcrysgro.2017.06.013 Dujardin, C., Auffray, E., Bourret-Courchesne, E., Dorenbos, P., Lecoq, P., Nikl, M., Vasil’ev, A.N., Yoshikawa, A., Zhu, R.-, 2018. Needs, Trends, and Advances in Inorganic Scintillators. IEEE Trans. Nucl. Sci. 65, 1977–1997. https://doi.org/10.1109/TNS.2018.2840160 Eritenko, A.N., Tsvetyansky, A.L., 2020. Separation of materials according to the effective atomic number using photons of two energies in the range of 60–700 keV. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 462, 114–118. https://doi.org/10.1016/j.nimb.2019.10.020 Fan, T., Lü, J., Huang, Y., Li, G., 2018. Monodispersing Eu 3+ and Li + codoped CaF 2 nanoparticles for efficient luminescence. Micro Nano Lett. 13, 393–396. https://doi.org/10.1049/mnl.2017.0662 Jagtap, S., Chopade, P., Tadepalli, S., Bhalerao, A., Gosavi, S., 2019. A review on the progress of ZnSe as inorganic scintillator. Opto-Electron. Rev. 27, 90–103. https://doi.org/10.1016/j.opelre.2019.01.001 Kandarakis, I., 2016. Luminescence in medical image science. J. Lumin. 169, 553–558. https://doi.org/10.1016/j.jlumin.2014.11.009 Karpetas, G.E., Michail, C.M., Fountos, G.P., Kalyvas, N.I., Valais, I.G., Kandarakis, I.S., Panayiotakis, G.S., 2017. Detective quantum efficiency (DQE) in PET scanners: A simulation study. Appl. Radiat. Isot. 125, 154–162. https://doi.org/10.1016/j.apradiso.2017.04.018 Lebedev, M.P., Startsev, O.V., Kychkin, A.K., 2019. Development of climatic tests of polymer materials for extreme operating conditions. Procedia Struct. Integr., 1st International Conference on Integrity and Lifetime in Extreme Environment (ILEE-2019) 20, 81–86. https://doi.org/10.1016/j.prostr.2019.12.119 Lecoq, P., 2016. Development of new scintillators for medical applications. Nucl. Instrum. Methods Phys. Res. Sect. Accel. Spectrometers Detect. Assoc. Equip., Advances in detectors and applications for medicine 809, 130–139. https://doi.org/10.1016/j.nima.2015.08.041 Lecoq, P., Gektin, A., Korzhik, M., 2017. Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering, 2nd ed, Particle Acceleration and Detection. Springer International Publishing. Linardatos, D., Konstantinidis, A., Valais, I., Ninos, K., Kalyvas, N., Bakas, A., Kandarakis, I., Fountos, G., Michail, C., 2020. On the Optical Response of Tellurium Activated Zinc Selenide ZnSe:Te Single Crystal. Crystals 10, 961. https://doi.org/10.3390/cryst10110961 Linardatos, D., Koukou, V., Martini, N., Konstantinidis, A., Bakas, A., Fountos, G., Valais, I., Michail, C., 2021a. On the Response of a Micro Non-Destructive Testing X-ray Detector. Materials 14, 888. https://doi.org/10.3390/ma14040888 Linardatos, D., Koukou, V., Martini, N., Konstantinidis, A., Bakas, A., Fountos, G., Valais, I., Michail, C., 2021b. Assessing the Information
Made with FlippingBook - Online magazine maker