PSI - Issue 41
Mohamed Amine Belyamna et al. / Procedia Structural Integrity 41 (2022) 372–383 Mohamed Amine Belyamna et al. / Structural Integrity Procedia 00 (2022) 000–000
383
12
compared to the traditional MCS, the ANN method is a fast estimation tool for reliability of IG-SCC pipes. Finally, a strong correlation between the probability at the end of life and the damage parameter for each pipe size can be evaluated. The results-based damage parameter can be used to assess structural reliability and identify the most effective approaches to improve piping reliability. Acknowledgements The authors would like to thank the Ministry of Higher Education and Scientific Research (Ministère de l’Enseignement Supérieur et de la Recherche Scientifique (MESRS)), Algeria, for technical and financial support (Project code. A01L09UN410120200002). References American Society of Materials. ASM handbook: fatigue and fracture. USA: Materials Information Society International; 1996. Boutelidja, R., Guedri, A., Belyamna, M.A., Merzoug, B., 2019. Environmental effects on the reliability of an AISI 304 structure. Frattura Ed Integrita Strutturale, 13(50), 98–111, DOI:10.3221/IGF-ESIS.50.10. Cardoso, J.B., de Almeida, J.R., Dias, J.M., Coelho, P.G., 2008. Structural reliability analysis using Monte Carlo simulation and neural networks, Advances in Engineering Software, 39(6), pp. 505–13, DOI: 10.1016/j.advengsoft.2007.03.015. Guedri, A., 2013a. Reliability analysis of stainless steel piping using a single stress corrosion cracking damage parameter, Int. J. Press. Vessel. Pip., 111–112, pp. 1–11, DOI: 10.1016/j.ijpvp.2013.03.011. Guedri, A., 2013b. Effects of remedial actions on small piping reliability, Proc. Inst. Mech. Eng. Part O J. Risk Reliab., 227(2), pp. 144–161, DOI: 10.1177/1748006X13477798. Guedri, A., Djebbar,Y., Khaleel, M., and Zeghloul, A., Structural Reliability Improvement Using In-Service Inspection for Intergranular Stress Corrosion of Large Stainless Steel Piping, in Applied Fracture Mechanics. London, UK: IntechOpen, 2012. DOI: 10.5772/48521. Guedri, A., Zeghloul, A., Merzoug, B., 2009. Reliability analysis of BWR piping including the effect of residual stresses. International Review of Mechanical Engineering (I.RE.M.E.), pp. 640–645, Vol. 3, n. 5. Gurney, K., An Introduction to Neural Networks; Routledge: London, UK, 1997. Harris, DO., Dedhia, DD., Theoretical and user’s manual for PC-PRAISE. A probabilistic fracture mechanics computer code for piping reliability analysis, US Nuclear Regulatory Commission, Washington, DC (July 1992) NUREG/CR- 5864, UCRL-ID-109798. Khaleel, MA, Simonen, FA., Evaluations of Structural Failure Probabilities and Candidate In-service Inspection Programs. NUREG/CR-6986; PNNL-13810, Pacific Northwest National Laboratory, Richland, WA. 2009. Lippmann, R. P., 1987. An introduction to computing with neural nets. IEEE ASSP Magazine, 4–22. Meireles, M. R. G., Almeida, P. E. M., Simoes, M. G., 2003. A comprehensive review for industrial applicability of artificial neural networks. IEEE Trans. Ind. Electron. 50 (3), 585–601. DOI: 10.1109/TIE.2003.812470. Papadrakakis, M., Lagaros, N.D., 2002. Reliability-based structural optimization using neural networks and Monte Carlo simulation, Computer Methods in Applied Mechanics and Engineering, 191(32), pp. 3491–507, Doi: 10.1016/S0045-7825(02)00287-6. Pourahmadi, M., Saybani, M., 2022 Reliability analysis with corrosion defects in submarine pipeline case study: Oil pipeline in Ab-khark island, Ocean Engineering, Vol. 249, Doi:10.1016/j.oceaneng.2022.110885. Priya, C., Rao, K.B., Anoop, M.B., Lakshmanan, N., Gopika, V., Kushwaha, H.S., Saraf, R.K., 2005. Probabilistic Failure Analysis of Austenitic Nuclear Pipelines against Stress Corrosion Cracking, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., 219(7), pp. 607–624, DOI: 10.1243/095440605X31526. Solanki, R.B., Kulkarni, H.D., Singh, S., Varde, P. V., Verma, A.K., 2020. Reliability assessment of passive systems using artificial neural network based response surface methodology, Annals of Nuclear Energy, 144, Doi: 10.1016/j.anucene.2020.107487. Ting, K. 1999. The evaluation of intergranular stress corrosion cracking problems of stainless steel piping in Taiwan BWR-6 nuclear power plant. Nuclear Engineering and Design, 191(2):245–254. Doi: org/10.1016/S0029-5493(99)00146-6. Wen, K., He, L., Liu, J., Gong, J., 2019. An optimization of artificial neural network modeling methodology for the reliability assessment of corroding natural gas pipelines, Journal of Loss Prevention in the Process Industries, 60(March), pp. 1–8, Doi: 10.1016/j.jlp.2019.03.010. Xu, W.Z., Li, C.B., Choung, J., Lee, J.M., 2017. Corroded pipeline failure analysis using artificial neural network scheme, Advances in Engineering Software, 112, pp. 255–66, Doi: 10.1016/j.advengsoft.2017.05.006. You, J.S., Wu, W.F., 2002. Probabilistic failure analysis of nuclear piping with empirical study of Taiwan’s BWR plants. International Journal of Pressure Vessels and Piping; 79:483—92. Doi: 10.1016/S0308-0161(02)00061-3 Zhang, H., Tian, Z.W., 2022. Failure analysis of corroded high-strength pipeline subject to hydrogen damage based on FEM and GA-BP neural network,International Journal of Hydrogen Energy, 47(7), pp. 4741–4758, Doi: 10.1016/j.ijhydene.2021.11.082. Zhang, H., Tian, Z.W., Reliability assessment of corroded pipeline considering multiple defects interaction based on an artificial neural network method, 2020 Asia-Pacific International Symposium on Advanced Reliability and Maintenance Modeling, APARM 2020, pp. 1–6, Doi: 10.1109/APARM49247.2020.9209428. Zhang, S., Shibata, T., Haruna, T., 1997. Initiation and propagation of IGSCC for sensitized type 304 stainless steel in dilute sulfate solutions. Corrosion Science; 39(9):1725–39, Doi:10.1016/S0010-938X(97)00078-4.
Made with FlippingBook - Online magazine maker