PSI - Issue 41

J.E.S.M. Silva et al. / Procedia Structural Integrity 41 (2022) 36–47 Silva et al. / Structural Integrity Procedia 00 (2019) 000 – 000

47

12

Campilho, R., Pinto, A., Banea, M.D., Silva, R., da Silva, L.F., 2011a. Strength improvement of adhesively-bonded joints using a reverse-bent geometry. Journal of Adhesion Science and Technology 25, 2351-2368. Campilho, R.D.S.G., Banea, M.D., Chaves, F.J.P., Silva, L.F.M.d., 2011b. eXtended Finite Element Method for fracture characterization of adhesive joints in pure mode I. Computational Materials Science 50, 1543-1549. Campilho, R.D.S.G., Banea, M.D., Neto, J.A.B.P., da Silva, L.F.M., 2012. Modelling of single-lap joints using cohesive zone models: Effect of the cohesive parameters on the output of the simulations. The Journal of Adhesion 88, 513-533. Campilho, R.D.S.G., Banea, M.D., Neto, J.A.B.P., da Silva, L.F.M., 2013. Modelling adhesive joints with cohesive zone models: effect of the cohesive law shape of the adhesive layer. International Journal of Adhesion & Adhesives 44, 48-56. Campilho, R.D.S.G., Banea, M.D., Pinto, A.M.G., da Silva, L.F.M., de Jesus, A.M.P., 2011c. Strength prediction of single- and double-lap joints by standard and extended finite element modelling. International Journal of Adhesion and Adhesives 31, 363-372. Campilho, R.D.S.G., de Moura, M.F.S.F., Domingues, J.J.M.S., 2007. Stress and failure analyses of scarf repaired CFRP laminates using a cohesive damage model. Journal of Adhesion Science and Technology 21, 855-870. Campilho, R.D.S.G., de Moura, M.F.S.F., Domingues, J.J.M.S., 2009. Numerical prediction on the tensile residual strength of repaired CFRP under different geometric changes. International Journal of Adhesion and Adhesives 29, 195-205. de Sousa, C.C.R.G., Campilho, R.D.S.G., Marques, E.A.S., Costa, M., da Silva, L.F.M., 2017. Overview of different strength prediction techniques for single-lap bonded joints. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 231, 210-223. Fernandes, R.L., Campilho, R.D.S.G., 2017. Testing different cohesive law shapes to predict damage growth in bonded joints loaded in pure tension. The Journal of Adhesion 93, 57-76. Fernandes, R.L., Campilho, R.D.S.G., 2019. Accuracy of cohesive laws with different shape for the shear behaviour prediction of bonded joints. The Journal of Adhesion 95, 325-347. Ferreira, L.R.F., Campilho, R.D.S.G., Rocha, R.J.B., Barbosa, D.R., 2019. Geometrical and material optimization of tensile loaded tubular adhesive joints using cohesive zone modelling. The Journal of Adhesion 95, 425-449. Goland, M., Reissner, E., 1944. The stresses in cemented joints. Journal of Applied Mechanics 66, A17 – A27. He, D., Sawa, T., Iwamoto, T., Hirayama, Y., 2010. Stress analysis and strength evaluation of scarf adhesive joints subjected to static tensile loadings. International Journal of Adhesion and Adhesives 30, 387-392. Hosseinzadeh, R., Shahin, K., Taheri, F., 2007. A simple approach for characterizing the performance of metallic tubular adhesively-bonded joints under torsion loading. Journal of Adhesion Science and Technology 21, 1613-1631. Kaiser, I., Tan, K.T., 2020. Damage and strength analysis of Carbon Fiber Reinforced Polymer and Titanium tubular-lap joint using hybrid adhesive design. International Journal of Adhesion and Adhesives 103, 102710. Krar, S.F., Gill, A.R., Smid, P., 2011. Technology of Machine Tools, 7th ed. McGraw-Hill. Labbé, S., Drouet, J.-M., 2012. A multi-objective optimization procedure for bonded tubular-lap joints subjected to axial loading. International Journal of Adhesion and Adhesives 33, 26-35. Nguyen, V., Kedward, K.T., 2001. Non-linear Modeling of Tubular Adhesive Scarf Joints Loaded in Tension. The Journal of Adhesion 76, 265 292. Nunes, S.L.S., Campilho, R.D.S.G., da Silva, F.J.G., de Sousa, C.C.R.G., Fernandes, T.A.B., Banea, M.D., da Silva, L.F.M., 2016. Comparative Failure Assessment of Single and Double Lap Joints with Varying Adhesive Systems. The Journal of Adhesion 92, 610-634. Petrie, E.M., 2000. Handbook of adhesives and sealants. McGraw-Hill, New York, USA. Rocha, R.J.B., Campilho, R.D.S.G., 2018. Evaluation of different modelling conditions in the cohesive zone analysis of single-lap bonded joints. The Journal of Adhesion 94, 562-582. Taib, A.A., Boukhili, R., Achiou, S., Boukehili, H., 2006. Bonded joints with composite adherends. Part II. Finite element analysis of joggle lap joints. International Journal of Adhesion and Adhesives 26, 237-248. Volkersen, O., 1938. Die nietkraftverteilung in zugbeanspruchten nietverbindungen mit konstanten laschenquerschnitten. Luftfahrtforschung 15, 41-47. Woelke, P.B., Shields, M.D., Abboud, N.N., Hutchinson, J.W., 2013. Simulations of ductile fracture in an idealized ship grounding scenario using phenomenological damage and cohesive zone models. Computational Materials Science 80, 79-95. Wu, C., Chen, C., He, L., Yan, W., 2018. Comparison on damage tolerance of scarf and stepped-lap bonded composite joints under quasi-static loading. Composites Part B: Engineering 155, 19-30.

Made with FlippingBook - Online magazine maker