PSI - Issue 41
Irina Goryacheva et al. / Procedia Structural Integrity 41 (2022) 220–231 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
231
12
Multu iaxial Loading”, Biaxial and Multiaxial Fatigue . Daves, W., Kubin, W., Scheriau, S. and Pletz, M. (2016), “A finite element model to simulate the physical mechanisms of wear and crack initiation in wheel/rail contact”, Wear , Vol. 366 – 367, pp. 78 – 83. Goldst ein, R.V., Zazovsky, A.F., Spector, A.A. and Fedorenko, R.P. (1982), “Solutions of three -dimensional rolling problems with slip and adhesion by variational methods”, Advances in Mechanics , Vol. 5 No. 3/4, pp. 61 – 102. Goryacheva, I.G. (1998), Contact Mechanics in Tribology , Kluwer Aca. Goryacheva, I.G. and Chekina, O.G. (1999), “Surface Wear: From Microfracture Modeling to Form Change Analysis”, Mechanics of Solids , Vol. 5, pp. 131 – 147. Goryacheva, I.G. and Torskaya, E.V. (2019), “Modeling the Accumulation o f Contact Fatigue Damage in Materials with Residual Stresses under Rolling Friction”, Journal of Friction and Wear , Vol. 40 No. 1, pp. 33 – 38. Guo, J., Wang, W.J., He, C.G., Jin, X.S., Liu, Q.Y., Zhu, Y., Ma, L., et al. (2016), “Study on wear and rolling contact fatigue behaviors of wheel/rail materials under different slip ratio conditions”, Wear , Vol. 366 – 367, pp. 13 – 26. Hiensch, M. and Burgelman, N. (2019), “Rolling contact fatigue: Damage function development from tw o- disc test data”, Wear , Elsevier B.V., Vol. 430 – 431 No. May, pp. 376 – 382. Hu, Y., Zhou, L., Ding, H.H., Tan, G.X., Lewis, R., Liu, Q.Y., Guo, J., et al. (2020), “Investigation on wear and rolling contact fatigue of wheel rail materials under various wheel /rail hardness ratio and creepage conditions”, Tribology International , Vol. 143 No. November 2019, p. 106091. Johnson, K.L. (1985), Contact Mechanics , Cambridge University Press, available at:https://doi.org/10.1017/CBO9781139171731. Kalker, J.J. (1982), “A Fast Algorithm for the Simplified Theory of Rolling Contact”, Vehicle System Dynamics , Vol. 11 No. 1, pp. 1 – 13. Kalker, J.J. (1990), Three-Dimensional Elastic Bodies in Rolling Contact , Book , Vol. 66, Springer, available at:https://doi.org/10.1007/978-94 015-7889-9. Magel, E.E. (2011), “Rolling Contact Fatigue: A Comprehensive Review”, Federal Railroad Administration , No. November, p. 132. Meshcheryakova, A.R. and Goryacheva, I.G. (2021), “Stress State of Elastic Bodies with an Intermediate Layer in Rolling Contact with Slip”, Physical Mesomechanics , Vol. 24 No. 4, pp. 441 – 450. Pal, S., Daniel, W.J.T., Valente, C.H.G., Wilson, A. and Atrens, A. (2012), “Surface damage on new AS60 rail caused by wheel slip”, Engineering Failure Analysis , Elsevier Ltd, Vol. 22, pp. 152 – 165. Sadeghi, F., Jalalahmadi, B., Slack, T.S., Raje, N. and Arakere, N.K. (2009), “A review of rolling contact fatigue”, Journal of Tribology , Vol. 131 No. 4, pp. 1 – 15. Sakalo, V., Sakalo, A., Rodikov, A. and Tomashevskiy, S. (2019), “Compute r modeling of processes of wear and accumulation of rolling contact fatigue damage in railway wheels using combined criterion”, Wear , Elsevier Ltd, Vol. 432 – 433, available at:https://doi.org/10.1016/j.wear.2019.05.015. Santa, J.F., Cuervo, P., Christoforou , P., Harmon, M., Beagles, A., Toro, A. and Lewis, R. (2019), “Twin disc assessment of wear regime transitions and rolling contact fatigue in R400HT – E8 pairs”, Wear , Elsevier B.V., Vol. 432 – 433 No. May, p. 102916. Zhang, S., Spiryagin, M., Lina, Q., Ding, H., Wu, Q., Guo, J., Liu, Q., et al. (2022), “Study on wear and rolling contact fatigue behaviours of defective rail under different slip ratio and contact stress conditions”, Tribology International , Elsevier Ltd, Vol. 169 No. December 2021, p. 107491. Zhou, Y., Peng, J.F., Wang, W.J., Jin, X.S. and Zhu, M.H. (2016), “Slippage effect on rolling contact wear and damage behavio r of pearlitic steels”, Wear , Elsevier, Vol. 362 – 363, pp. 78 – 86.
Made with FlippingBook - Online magazine maker