PSI - Issue 41
Fabio Distefano et al. / Procedia Structural Integrity 41 (2022) 470–485 Author name / Structural Integrity Procedia 00 (2019) 000–000
484
15
References
Abbasi, N., Hamlet, S., Love, R.M., Nguyen, N.T., 2020. Porous scaffolds for bone regeneration. J. Sci. Adv. Mater. Devices 5, 1–9. https://doi.org/10.1016/j.jsamd.2020.01.007 Al-Ketan, O., Rowshan, R., Abu Al-Rub, R.K., 2018. Topology-mechanical property relationship of 3D printed strut, skeletal, and sheet based periodic metallic cellular materials. Addit. Manuf. 19, 167–183. https://doi.org/10.1016/j.addma.2017.12.006 Al-Saedi, D.S.J., Masood, S.H., Faizan-Ur-Rab, M., Alomarah, A., Ponnusamy, P., 2018. Mechanical properties and energy absorption capability of functionally graded F2BCC lattice fabricated by SLM. Mater. Des. 144, 32–44. https://doi.org/10.1016/j.matdes.2018.01.059 Ashby, M.F., 2006. The properties of foams and lattices. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364, 15–30. https://doi.org/10.1098/rsta.2005.1678 Bobbert, F.S.L., Lietaert, K., Eftekhari, A.A., Pouran, B., Ahmadi, S.M., Weinans, H., Zadpoor, A.A., 2017. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties. Acta Biomater. 53, 572–584. https://doi.org/10.1016/j.actbio.2017.02.024 Caliogna, L., Bina, V., Botta, L., Benazzo, F.M., Medetti, M., Maestretti, G., Mosconi, M., Cofano, F., Tartara, F., Gastaldi, G., 2020. Osteogenic potential of human adipose derived stem cells (hASCs) seeded on titanium trabecular spinal cages. Sci. Rep. 10, 1–9. https://doi.org/10.1038/s41598-020-75385-y Choy, S.Y., Sun, C.N., Leong, K.F., Wei, J., 2017. Compressive properties of Ti-6Al-4V lattice structures fabricated by selective laser melting: Design, orientation and density. Addit. Manuf. 16, 213–224. https://doi.org/10.1016/j.addma.2017.06.012 du Plessis, A., Yadroitsava, I., Yadroitsev, I., le Roux, S.G., Blaine, D.C., 2018. Numerical comparison of lattice unit cell designs for medical implants by additive manufacturing. Virtual Phys. Prototyp. 13, 266–281. https://doi.org/10.1080/17452759.2018.1491713 Efraim, Y., Schoen, B., Zahran, S., Davidov, T., Vasilyev, G., Baruch, L., Zussman, E., Machluf, M., 2019. 3D Structure and Processing Methods Direct the Biological Attributes of ECM-Based Cardiac Scaffolds. Sci. Rep. 9, 1–13. https://doi.org/10.1038/s41598-019-41831-9 Epasto, G., Distefano, F., Mineo, R., Guglielmino, E., 2019a. Subject-specific finite element analysis of a lumbar cage produced by electron beam melting. Med. Biol. Eng. Comput. 57, 2771–2781. https://doi.org/10.1007/s11517-019-02078-8 Epasto, G., Palomba, G., D’Andrea, D., Guglielmino, E., Di Bella, S., Traina, F., 2019b. Ti-6Al-4V ELI microlattice structures manufactured by electron beam melting: Effect of unit cell dimensions and morphology on mechanical behaviour. Mater. Sci. Eng. A 753, 31–41. https://doi.org/10.1016/j.msea.2019.03.014 Gao, H., Li, X., Wang, Chunjuan, Ji, P., Wang, Chao, 2019. Mechanobiologically optimization of a 3D titanium-mesh implant for mandibular large defect: A simulated study. Mater. Sci. Eng. C 104, 109934. https://doi.org/10.1016/j.msec.2019.109934 Gibson, L.J., Ashby, M.F., 1988. Cellular Solids Structure and Properties. Gümrük, R., Mines, R.A.W., Karadeniz, S., 2013. Static mechanical behaviours of stainless steel micro-lattice structures under different loading conditions. Mater. Sci. Eng. A 586, 392–406. https://doi.org/10.1016/j.msea.2013.07.070 Harrysson, O.L.A., Cansizoglu, O., Marcellin-Little, D.J., Cormier, D.R., West, H.A., 2008. Direct metal fabrication of titanium implants with tailored materials and mechanical properties using electron beam melting technology. Mater. Sci. Eng. C 28, 366–373. https://doi.org/10.1016/j.msec.2007.04.022 Johnson, G.R., Cook, W.H., 1985. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21, 31–48. https://doi.org/10.1016/0013-7944(85)90052-9 Kadkhodapour, J., Montazerian, H., Raeisi, S., 2014. Investigating internal architecture effect in plastic deformation and failure for TPMS-based scaffolds using simulation methods and experimental procedure. Mater. Sci. Eng. C 43, 587–597. https://doi.org/10.1016/j.msec.2014.07.047 Kotkunde, N., Deole, A.D., Gupta, A.K., Singh, S.K., 2014. Comparative study of constitutive modeling for Ti-6Al-4V alloy at low strain rates and elevated temperatures. Mater. Des. 55, 999–1005. https://doi.org/10.1016/j.matdes.2013.10.089 Li, S.J., Xu, Q.S., Wang, Z., Hou, W.T., Hao, Y.L., Yang, R., Murr, L.E., 2014. Influence of cell shape on mechanical properties of Ti-6Al-4V meshes fabricated by electron beam melting method. Acta Biomater. 10, 4537–4547. https://doi.org/10.1016/j.actbio.2014.06.010 Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O., Brandt, M., 2019. SLM lattice structures: Properties, performance, applications and challenges. Mater. Des. 183, 108137. https://doi.org/10.1016/j.matdes.2019.108137 Refai, K., Brugger, C., Montemurro, M., Saintier, N., 2020. An experimental and numerical study of the high cycle multiaxial fatigue strength of titanium lattice structures produced by Selective Laser Melting (SLM). Int. J. Fatigue 138, 105623. https://doi.org/10.1016/j.ijfatigue.2020.105623 Sidambe, A.T., 2014. Biocompatibility of advanced manufactured titanium implants-A review. Materials (Basel). 7, 8168–8188. https://doi.org/10.3390/ma7128168 Wang, S., Liu, L., Li, K., Zhu, L., Chen, J., Hao, Y., 2019. Pore functionally graded Ti6Al4V scaffolds for bone tissue engineering application. Mater. Des. 168, 107643. https://doi.org/10.1016/j.matdes.2019.107643 Wei, Y.L., Yang, Q.S., Liu, X., Tao, R., 2022. Multi-bionic mechanical metamaterials: A composite of FCC lattice and bone structures. Int. J. Mech. Sci. 213, 106857. https://doi.org/10.1016/j.ijmecsci.2021.106857 Yang, L., Han, C., Wu, H., Hao, L., Wei, Q., Yan, C., Shi, Y., 2020. Insights into unit cell size effect on mechanical responses and energy absorption capability of titanium graded porous structures manufactured by laser powder bed fusion. J. Mech. Behav. Biomed. Mater. 109, 103843. https://doi.org/10.1016/j.jmbbm.2020.103843 Yu, T., Hyer, H., Sohn, Y., Bai, Y., Wu, D., 2019. Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting. Mater. Des. 182, 108062. https://doi.org/10.1016/j.matdes.2019.108062 Zadpoor, A.A., 2019. Mechanical performance of additively manufactured meta-biomaterials. Acta Biomater. 85, 41–59. https://doi.org/10.1016/j.actbio.2018.12.038 Zadpoor, A.A., Hedayati, R., 2016. Analytical relationships for prediction of the mechanical properties of additively manufactured porous biomaterials. J. Biomed. Mater. Res. - Part A 104, 3164–3174. https://doi.org/10.1002/jbm.a.35855 Zhang, Y., Outeiro, J.C., Mabrouki, T., 2015. On the selection of Johnson-Cook constitutive model parameters for Ti-6Al-4V using three types of numerical models of orthogonal cutting. Procedia CIRP 31, 112–117. https://doi.org/10.1016/j.procir.2015.03.052
Made with FlippingBook - Online magazine maker