PSI - Issue 41
Jesús Toribio et al. / Procedia Structural Integrity 41 (2022) 736–743 Jesús Toribio / Procedia Structural Integrity 00 (2022) 000–000
743
8
References Andresen, P.L., Ford, F.P., 1988. Life prediction by mechanistic modeling and system monitoring of environmental cracking of iron and nickel alloys in aqueous systems. Materials Science and Engineering A103, 167-184. Burnell, G., Hardie, D., Parkins, R.N., 1987. Stress corrosion and hydrogen embrittlement of two precipitation hardening stainless steels. British Corrosion Journal 22, 229-237. Congleton, J., Shoji, T., Parkins, R.N., 1985. The stress corrosion cracking of reactor pressure vessel steel in high temperature water. Corrosion Science 25, 633-650. Costa, J.E., Thompson, A.W., 1982. Hydrogen cracking in nominally pearlitic 1045 steel. Metallurgical Transactions 13A, 1315-1318. Ford, F.P., Silverman, M., 1980. Effect of loading rate on environmentally controlled cracking of sensitized 304 stainless steel in high purity water. Corrosion 36, 597-603. Herbsleb, G., Schwenk, W., 1985. The influence of dynamic mechanical parameters on stress corrosion cracking of steel - a review. Corrosion 41, 431-437. Hinton, B.R.W., Procter, R.P.M., 1983. The effect of strain-rate and cathodic potential on the tensile ductility of X-65 pipeline steel. Corrosion Science 23, 101-123. Kim, C.D., Wilde, B.E., 1979. A review of the constant strain-rate stress corrosion cracking test. Stress Corrosion Cracking - The Slow Strain Rate Technique, ASTM STP 665 (G.M. Ugiansky and J.H. Payer, Eds.) American Society for Testing and Materials, Philadelphia, pp.97-112. Lidbury, D.P.G., 1983. The estimation of crack tip strain rate parameters characterizing environment assisted crack growth data. Embrittlement by the Localized Crack Environment (R.P. Gangloff, Ed.,) AIME, New York, pp. 149-172. Magnin, T., Chieragatti, R., Oltra, R., 1990. Mechanism of brittle fracture in a ductile 316 alloy during stress corrosion. Acta Metallurgica et Materialia 38, 1313-1319. Maiya, P.S., 1987. Prediction of environmental and strain-rate effects on the stress corrosion cracking of austenitic stainless steels. Journal of Pressure Vessel Technology 109, 116-123. Maiya, P.S., Shack, W.J., 1985. Stress corrosion cracking susceptibility of AISI 316 NG and 316 stainless steel in an impurity environment. Corrosion 41, 630-634. Mayville, R.A., Warren, T.J., Hilton, P.D., 1987. The influence of displacement rate on environmentally assisted cracking of precracked ductile steel specimens. Journal of Engineering Materials and Technology 109, 188-193. Mayville, R.A., Warren, T.J., Hilton, P.D., 1989. Determination of the loading rate needed to obtain environmentally assisted cracking in rising load tests. Journal of Testing and Evaluation 17, 203-211. Parkins, R.N., 1987. Factors influencing stress corrosion crack growth kinetics. Corrosion 43, 130-139. Parkins, R.N., 1989. The application of stress corrosion crack growth kinetics to predicting lifetimes of structures. Corrosion Science 29, 1019-1038. Parkins, R.N., 1990. Strain rate effects in stress corrosion cracking. Corrosion 46, 178-189. Rieck, R.M., Atrens, A., Smith, I.O., 1989. The role of crack tip strain rate in the stress corrosion cracking of high strength steels in water. Metallurgical Transactions 20A, 889-895. Scully, J.C., 1980. The interaction of strain-rate and repassivation rate in stress corrosion crack propagation. Corrosion Science 20, 997-1016. Scully, J.R., Moran, P.J., 1988. Influence of strain on the environmental hydrogen-assisted cracking of a high-strength steel in sodium chloride solution. Corrosion 44, 176-185. Thompson, A.W., Chesnutt, J.C., 1979. Identification of a fracture mode: the tearing topography surface. Metallurgical Transactions 10A, 1193-1196. Toribio, J., 1997a. Local strain rate at crack tip: implications in stress corrosion cracking. British Corrosion Journal 32, 41-47. Toribio, J., 1997b. The role of crack tip strain rate in hydrogen assisted cracking. Corrosion Science 39, 1687-1697. Toribio, J., 1997c. Fracture mechanics approach to hydrogen assisted microdamage in eutectoid steel. Metallurgical and Materials Transactions 28A, 191-197. Toribio, J., 1997d. A fracture criterion for high-strength steel notched bars. Engineering Fracture Mechanics 57, 391-404. Toribio, J., 1998. Material factors influencing notch tip strain rate. British Corrosion Journal 33, 23-28. Toribio, J., 2012. Time-dependent triaxiality effects on hydrogen-assisted micro-damage evolution in pearlitic steel. ISIJ International 52, 228-233. Toribio, J., Elices, M., 1992. The role of local strain rate in the hydrogen embrittlement of round-notched samples. Corrosion Science 33, 1387-1409. Toribio, J., Kharin, V., 1997a. K -dominance condition in hydrogen assisted cracking: The role of the far field. Fatigue and Fracture of Engineering Materials and Structures 20, 729-745. Toribio, J., Kharin, V., 1997b. The effect of history on hydrogen assisted cracking: 1. Coupling of hydrogenation and crack growth. International Journal of Fracture 88, 233-245. Toribio, J., Kharin, V., 1997c. The effect of history on hydrogen assisted cracking: 2. A revision of K -dominance. International Journal of Fracture 88, 247-258. Toribio, J., Kharin, V., 1998. Evaluation of hydrogen assisted cracking: The meaning and significance of the fracture mechanics approach. Nuclear Engineering and Design 182, 149-164. Toribio, J., Kharin, V., 2000. A hydrogen diffusion model for applications in fusion nuclear technology. Fusion Engineering and Design 51-52, 213-218. Toribio, J., Kharin, V., 2015. A generalised model of hydrogen diffusion in metals with multiple trap types. Philosophical Magazine 95, 3429-3451. Toribio, J., Vasseur, E., 1997. Hydrogen-assisted micro-damage evolution in pearlitic steel. Journal of Materials Science Letters 16, 1345-1348.
Made with FlippingBook - Online magazine maker