PSI - Issue 41
R. Nobile et al. / Procedia Structural Integrity 41 (2022) 421–429 Riccardo Nobile et al. / Structural Integrity Procedia 00 (2019) 000 – 000
429
9
material which undergoes a variation in resistivity and therefore a smaller increase in the variation in electrical resistance. Before final failure, from about 80 to 90% of the fatigue life, the resistance increases rapidly in the propagation phases of the crack. These behaviours are similar to those observed by the authors in the previous works conducted on the C45 specimens. In conclusion, the proposed ERC method for monitoring structural health seems to be valid for detecting progressive fatigue damage and constitutes a valid alternative to the use of ultrasonic piezoelectric sensors in monitoring the structural health of metals structures.
References
Chung, D. D. L., 2001. Structural health monitoring by electrical resistance measurement. Smart Mater. Struct. 10, 624-636. Dattoma, V., Nobile, R., Panella, F. W., Saponaro, A., 2019. Real-time monitoring of damage evolution by nonlinear ultrasonic technique. Procedia Struct Integrity 24, 583 – 92. Foedinger, R. C., Rea, D. L., Sirkis J. S., Baldwin, C.S., Troll, J. R., Grande, R., Davis, C. S. and VanDiver T. L., 1999. Embedded fiber optic sensor array for structural health monitoring of filament wound composite pressure vessels. Proc. SPIE 3670, 289-301. Kelly, J., 2006. Stainless steel. Mechanical Engineers’ Handbook – Materials and Mechanical Design (3 rd Edition), 49-53, 439-440. Middleton, C. A., McCrory, J. P., Greene, R. J., Holford, K., Patterson, E. A., 2019. Detecting and Monitoring Cracks in Aerospace Materials Using Post-Processing of TSA and AE Data. Metals 9 (7), 748. Nobile, R., Saponaro, A., 2021. Real-time monitoring of fatigue damage by electrical resistance change method. International Journal of Fatigue 151, 106404. Nobile, R., Saponaro, A., 2020. In-situ measurements of fatigue damage evolution by electrical resistance method. Procedia Structural Integrity 28, 1321-1328. Omari, M.A., Sevostianov, I., 2013. Estimation of changes in the mechanical properties of stain-less steel subjected to fatigue loading via electrical resistance monitoring. Int J Eng Sci 65, 40 – 5. Palit Sagar, S., Das, S., Parida, N., Bhattacharya, D.K., 2006. Non-linear ultrasonic technique to assess fatigue damage in structural steel. Scr Mater 55(2), 199 – 202. Palumbo, D., De Finis, R., Saponaro, A., Nobile, R., Panella, F., Galietti, U., 2021. Assessment of TSA Technique for the Estimation of CFRP T Joint Debonding. Journal of Nondestructive Evaluation 40, 94. Park, J.-M., Lee, S.-I., DeVries, K.L., 2006. Nondestructive sensing evaluation of surface modified single-carbon fiber reinforced epoxy composites by electrical resistivity measurement. Compos Part B Eng. 37, 612-626. Vassilopoulos, A. P., Keller, T., 2011. Experimental Characterization of Fiber-Reinforced Composite Materials. In: Vassilopoulos AP, Keller T., editors. Fatigue of Fiber-reinforced Composites, Springer, 25-67. Vipperman, J. S., 1999. Novel autonomous structural health monitoring using piezoelectrics. AIAA/ASME/ASCE/AHS Conf. on Structures, Structural Dynamics & Materials, Technical Papers 4, 3107-14.
Made with FlippingBook - Online magazine maker