PSI - Issue 41

Danilo D’Andrea et al. / Procedia Structural Integrity 41 (2022) 199–207 D’Andrea et al. / Structural Integrity Procedia 00 (2019) 000–000

207

9

components. Int. J. Fatigue 22, 65–73. https://doi.org/10.1016/S0142-1123(99)00088-2 Liverani, E., Toschi, S., Ceschini, L., Fortunato, A., 2017. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel. J. Mater. Process. Technol. 249, 255–263. https://doi.org/10.1016/j.jmatprotec.2017.05.042 Malekipour, E., El-Mounayri, H., 2018. Common defects and contributing parameters in powder bed fusion AM process and their classification for online monitoring and control: a review. Int. J. Adv. Manuf. Technol. 95, 527–550. Mohammed, H.G., Ginta, T.L., Mustapha, M., 2020. The investigation of microstructure and mechanical properties of resistance spot welded AISI 316L austenitic stainless steel. Mater. Today Proc. 46, 1640–1644. https://doi.org/10.1016/j.matpr.2020.07.258 Pradeep, P.I., Kumar, V.A., Sriranganath, A., Singh, S.K., Sahu, A., Kumar, T.S., Narayanan, P.R., Arumugam, M., Mohan, M., 2020. Characterization and Qualification of LPBF Additively Manufactured AISI-316L Stainless Steel Brackets for Aerospace Application. Trans. Indian Natl. Acad. Eng. 5, 603–616. https://doi.org/10.1007/s41403-020-00159-x Risitano, A., Risitano, G., 2013. Determining fatigue limits with thermal analysis of static traction tests. Fatigue Fract. Eng. Mater. Struct. 36, 631–639. https://doi.org/10.1111/ffe.12030 Risitano, G., Guglielmino, E., Santonocito, D., 2018. Evaluation of mechanical properties of polyethylene for pipes by energy approach during tensile and fatigue tests, in: Procedia Structural Integrity. Elsevier B.V., pp. 1663–1669. https://doi.org/10.1016/j.prostr.2018.12.348 Saboori, A., Aversa, A., Bosio, F., Bassini, E., Librera, E., De Chirico, M., Biamino, S., Ugues, D., Fino, P., Lombardi, M., 2019. An investigation on the effect of powder recycling on the microstructure and mechanical properties of AISI 316L produced by Directed Energy Deposition. Mater. Sci. Eng. A 766, 138360. https://doi.org/10.1016/j.msea.2019.138360 Saboori, A., Aversa, A., Marchese, G., Biamino, S., Lombardi, M., Fino, P., 2020. Microstructure and mechanical properties of AISI 316L produced by directed energy deposition-based additive manufacturing: A review. Appl. Sci. 10. https://doi.org/10.3390/app10093310 Santonocito, D., 2020. Evaluation of fatigue properties of 3D-printed Polyamide-12 by means of energy approach during tensile tests. Procedia Struct. Integr. 25, 355–363. https://doi.org/10.1016/j.prostr.2020.04.040 Santonocito, D., Gatto, A., Risitano, G., 2021. Energy release as a parameter for fatigue design of additive manufactured metals. Mater. Des. Process. Commun. 1–7. https://doi.org/10.1002/mdp2.255 Simson, T., Emmel, A., Dwars, A., Böhm, J., 2017. Residual stress measurements on AISI 316L samples manufactured by selective laser melting. Addit. Manuf. 17, 183–189. https://doi.org/10.1016/j.addma.2017.07.007 Tilton, M., Lewis, G.S., Bok Wee, H., Armstrong, A., Hast, M.W., Manogharan, G., 2020. Additive manufacturing of fracture fixation implants: Design, material characterization, biomechanical modeling and experimentation. Addit. Manuf. 33, 101137. https://doi.org/10.1016/j.addma.2020.101137 Yang, L., Hsu, K., Baughman, B., Godfrey, D., Medina, F., Menon, M., Wiener, S., 2017. Additive manufacturing of metals: the technology, materials, design and production. Springer.

Made with FlippingBook - Online magazine maker