PSI - Issue 40
Natalya V. Burmasheva et al. / Procedia Structural Integrity 40 (2022) 75–81 Natalya V. Burmasheva at al. / Structural Integrity Procedia 00 (2022) 000 – 000
77 3
is the fluid velocity vector field in the i -th layer ( i =1,2); i , i are the density and dynamic viscosity of the i -th layer, respectively ( i =1,2); , i i i i x y z V V V x y z V
is a convective derivative;
x y z i j
κ
is the Hamilton operator; i , j , k are the unit vectors of the axes Ox , Oy , Oz ;
2 2 2 x y z 2 2 2
is the Laplace operator. In coordinate notation, the system (1), (2) takes the form
i
i
i
i
i
i
i
i
2
2 V V V 2
V
V
V
V
i
i
i
V
V
V
,
i
x
x
x
x
x
x
x
x
y
z
2
2
2
t
x
y
z
x
y
z
i
i
i
i
i
i
i
i i
2
2 V V V 2
V
V
V
V
i
i
i
y
y
y
y
y
y
y
,
V
V
V
i
x
y
z
2
2
2
t
x
y
z
x
y
z
i
i
i
i
i
i
i
2
2 V V V 2
V
V
V
V
i
i
i
,
(3)
V
V
V
i
z
z
z
z
z
z
z
x
y
z
2
2
2
t
x
y
z
x
y
z
i
i
i
y x z V V V x y z
0 = .
(4)
We will seek a solution to system (3), (4) in the class of exact solutions linear along some of the coordinates (Burmasheva et al., 2020; Burmasheva et al., 2020; Burmasheva et al., 2021; Burmasheva et al., 2021):
i z V = . 0
i i i x V U z u z y = ,
i i y V V z = ,
(5)
Class (5) describes vertical vortex shear flows with an arbitrary dependence on the vertical coordinate z . After the substitution of expression (5) into system (3), (4) and simple transformations, we obtain the following system of equations:
2 i
i 2 U u
i
V z
2
0
,
.
(6)
i
Vu
y
i
i
2
2
2
z
z
Taking into account the principle of indefinite coefficients, system (6) can be represented as
Made with FlippingBook - professional solution for displaying marketing and sales documents online