PSI - Issue 4

Stefan Kolitsch et al. / Procedia Structural Integrity 4 (2017) 95–105 Stefan Kolitsch/ Structural Integrity Procedia 00 (2017) 000 – 000

105 11

For the calculation of the endurance limit the stress based design concept using the Smith diagram is shown for different loading conditions and surface qualities. The predicted endurable stresses correlate acceptably with the experimentally determined endurance limits. Using the stress based design the high strength materials have a higher endurance limit (estimated from the ultimate tensile strength). Using fracture mechanics approaches for damage tolerant design, the Kitagawa-Takahashi diagram is used, where the admissible stress range depends on the crack length. Again, the predicted curves correlate acceptably with the experiments. Finally, it has been shown how the endurance limit for components containing cracks of a given size can be plotted in the commonly used Smith diagram. In conclusion, if one uses damage tolerant design concepts accounting adequately for the residual stresses from the bending process, high strength steels are, due to their improved wear resistance, promising candidate materials for switch components.

Acknowledgements

Financial support by the Austrian Federal Government (in particular from Bundesministerium für Verkehr, Innovation und Technologie and Bundesministerium für Wirtschaft, Familie und Jugend) represented by Österreichische Forschungsförderungsgesellschaft mbH and the Styrian and the Tyrolean Provincial Government, represented by Steirische Wirtschaftsförderungsgesellschaft mbH and Standortagentur Tirol, within the framework of the COMET Funding Programme is gratefully acknowledged.

References

Brocks, W., Schneider I., 2001. Numerical Aspects of the Path-Dependence of the J-Integral in Incremental Plasticity. Technical Note GKSS/WMS/01/08, GKSS, Geesthacht 2001. Chapetti, MD., 2003. Fatigue propagation of short cracks under constant amplitude loading. International Journal of Fatigue 25, 1319-1326. El Haddad, MH., Topper, TH., Smith KN., 1973. Prediction of non-propagating cracks. Engineering Fracture Mechanics 11, 573-584. FITNET, 2008. FITNET Fitness-for-Service Procedure, Rev. MK8, Geesthacht 2008. Forschungskuratorium Maschinenbau (FKM), 2012- Rechnerischer Festigkeitsnachweis für Maschinenbauteile (Proof of strength for mechanical engineering components). 6 th Ed., VDMA 2012. Forschungskuratorium Maschinenbau (FKM), 2009. Bruchmechanischer Festigkeitsnachweis für Maschinenbauteile (Fracture mechanics proof of strength for mechanical engineering components). 3 rd Ed., VDMA 2009. Haibach, E., 2006. Betriebsfestigkeit: Verfahren und Daten zur Bauteilberechnung. 3 rd Ed., Springer 2006. Kitagawa, H., Takahashi, S., 1976. Applicability of fracture mechanics to very small cracks or cracks in the early stage. Proceeding of the second international conference on mechanical behavior of materials ASM, pp. 627-631. Kolitsch, S., Gänser, HP., Pippan, R., 2016. Fatigue crack growth threshold as a design criterion – statistical scatter and load ratio in the Kitagawa-Takahashi diagram. IOP Conference Series: Materials Science and Engineering 119, http://iopscience.iop.org/article/10.1088/1757 899X/119/1/012015. Kolitsch, S., Gänser, HP., Pippan, R., 2017. Dependence of Fracture Strain on Flaw Size – Experiments and Theoretical Modelling. Engineering Failure Analysis. submitted. Maierhofer, J., Pippan, R., Gänser, HP., 2014. Modified NASGRO equation for physically short cracks. International Journal of Fatigue 59, 200 207. Newman, JC., Raju, IS., 1977. Improved stress-intensity factors for semi-elliptical cracks in finite-thickness plates. NASAReport TM-X-72825. Newman, JC., Raju, IS., 1979. Analysis of surface cracks in finite plates under tension or bending loads. NASAReport TP-1578. Newman, JC., Raju, IS., 1981. An Empirical Stress-Intensity Factor Equation for Surface Crack. Engineering Fracture Mechanics 15, 185-192. Newman, J.C., 1984. A crack opening stress equation for fatigue crack growth. International Journal of Fracture 24, R131 – R135 Shih, CF., O’Dowd, NP., Kirk, MT. , 1993. A Framework for Quantifying Crack Tip Constraint; ASTM STP 1171, pp. 2 – 20. Tabernig B, Powell P, Pippan R., 2000. Resistance curves for the threshold of fatigue crack propagation in particle reinforced aluminium alloys. Fatigue crack growth thresholds, endurance limits, and designs, ASTM STP 1372, J.C. Newman, JR. and R.S. Piascik, Eds., American Society for Testing and Materials, West Conshohocken, PA.

Made with FlippingBook Ebook Creator