PSI - Issue 38

Jinchao Zhu et al. / Procedia Structural Integrity 38 (2022) 621–630 Author name / Structural Integrity Procedia 00 (2021) 000 – 000

630 10

• The Stochastic NS method with r ref = r actual + 1 mm and FAT 200 (Case 4), predicts a lower fatigue life compared to using deterministic (mean) values of leg length, toe angle and toe radius (Case 3). • The influence of modeling the weld shape with convexity and concavity is negligible for the toe angle in the interval of 30° and 60°. This study demonstrates that there is a substantial difference in the predicted fatigue life depending on the used NS method. The prediction accuracy of the 4 studied cases needs to be investigated further in future work by validation against experimental observations. This work paves the way for including other sources of uncertainties such as stochastic residual stress field around the notch by including stochastic spatial fields (Alzweighi et al. (2021)) or using the stochastic finite-element method (SFEM) (Stefanou (2009)). Kainuma S, Mori T. A study on fatigue crack initiation point of load-carrying fillet welded cruciform joints. Int J Fatigue 2008;30:1669–77. https://doi.org/10.1016/j.ijfatigue.2007.11.003. Balasubramanian V, Guha B. Influence of weld size on fatigue life prediction for flux cored arc welded cruciform joints containing lack of penetration defects. Sci Technol Weld Join 2000;5:99–104. https://doi.org/10.1179/136217100101538083. Lee CH, Chang KH, Jang GC, Lee CY. Effect of weld geometry on the fatigue life of non-load-carrying fillet welded cruciform joints. Eng Fail Anal 2009;16:849–55. https://doi.org/10.1016/j.engfailanal.2008.07.004. Barsoum Z, Jonsson B. Fatigue assessment and lefm analysis of cruciform joints fabricated with different welding processes. Weld World 2008;52. https://doi.org/10.1007/BF03266657. Hultgren G, Myrén L, Barsoum Z, Mansour R. Digital scanning of welds and influence of sampling resolution on the predicted fatigue performance: modelling, experiment and simulation. Metals (Basel) 2021;11:822. https://doi.org/10.3390/met11050822. Niederwanger A, Warner DH, Lener G. The utility of laser scanning welds for improving fatigue assessment. Int J Fatigue 2020;140. https://doi.org/10.1016/j.ijfatigue.2020.105810. Hultgren G, Mansour R, Barsoum Z, Olsson M. Fatigue probability model for AWJ-cut steel including surface roughness and residual stress. J Constr Steel Res 2021;179. https://doi.org/10.1016/j.jcsr.2021.106537. Sandberg D, Mansour R, Olsson M. Fatigue probability assessment including aleatory and epistemic uncertainty with application to gas turbine compressor blades. Int J Fatigue 2017;95:132–42. https://doi.org/10.1016/j.ijfatigue.2016.10.001. Hobbacher, Adolf. Recommendations for fatigue design of welded joints and components. Vol. 47. Cham: Springer International Publishing, 2016. Pedersen MM, Mouritsen OO, Hansen MR, Andersen JG, Wenderby J. Re-analysis of fatigue data for welded joints using the notch stress approach. Int J Fatigue 2010;32. https://doi.org/10.1016/j.ijfatigue.2010.03.001. Rohani Raftar H, Dabiri M, Ahola A, Björk T. Re-evaluation of weld root fatigue strength for load-carrying fillet welded joints using the notch stress concept. Int J Fatigue 2021;144. https://doi.org/10.1016/j.ijfatigue.2020.106076. Mansour R, Zhu J, Edgren M, Barsoum Z. A probabilistic model of weld penetration depth based on process parameters. Int J Adv Manuf Technol 2019;105:499–514. https://doi.org/10.1007/s00170-019-04110-5. Mansour R, Olsson M. Efficient Reliability Assessment with the Conditional Probability Method. J Mech Des Trans ASME 2018;140. https://doi.org/10.1115/1.4040170. Mansour R, Olsson M. Response surface single loop reliability-based design optimization with higher-order reliability assessment. Struct Multidiscip Optim 2016;54:63–79. https://doi.org/10.1007/s00158-015-1386-x. Mansour R, Olsson M. A closed-form second-order reliability method using noncentral chi-squared distributions. J Mech Des Trans ASME 2014;136. https://doi.org/10.1115/1.4027982. Fricke, Wolfgang. IIW recommendations for the fatigue assessment of welded structures by notch stress analysis: IIW-2006-09. Woodhead Publishing, 2012. Radaj D. Preface. Des Anal Fatigue Resist Welded Struct 1990:9–10. https://doi.org/10.1016/b978-1-85573-004-5.50003-9. Sonsino CM, Fricke W, De Bruyne F, Hoppe A, Ahmadi A, Zhang G. Notch stress concepts for the fatigue assessment of welded joints - Background and applications. Int J Fatigue 2012;34:2–16. https://doi.org/10.1016/j.ijfatigue.2010.04.011. Sonsino CM. Structural durability assessment of welded offshore K-nodes by different local design concepts. Frat Ed Integrità Strutt Ed Integrità Strutt 2009;3:3–12. https://doi.org/10.3221/igf-esis.09.01. Fricke W, Kahl A. Local stress analysis and fatigue assessment of bracket toes based on measured weld profile. Int Inst Weld 2007. Ansys Inc. 2020. Canonsburg, Pennsylvania, U.S. Kainuma S, Mori T. A fatigue strength evaluation method for load-carrying fillet welded cruciform joints. Int J Fatigue 2006;28:864–72. https://doi.org/10.1016/j.ijfatigue.2005.10.004. Kaplan EL, Meier P. Nonparametric Estimation from Incomplete Observations. J Am Stat Assoc 1958;53:457. https://doi.org/10.2307/2281868. Alzweighi M, Mansour R, Lahti J, Hirn U, Kulachenko A. The influence of structural variations on the constitutive response and strain variations in thin fibrous materials. Acta Mater 2021;203. https://doi.org/10.1016/j.actamat.2020.11.003. Stefanou G. The stochastic finite element method: Past, present and future. Comput Methods Appl Mech Eng 2009;198:1031–51. https://doi.org/10.1016/j.cma.2008.11.007. References

Made with FlippingBook Digital Publishing Software