PSI - Issue 37
Khalil Naciri et al. / Procedia Structural Integrity 37 (2022) 469–476 Khalil Naciri et al. / Structural Integrity Procedia 00 (2019) 000 – 000
472
4
At the end of the test, two hinges developed due to the rotation of supports. Two more hinges developed, one under the load position 2 and the other just to the left of the load position 4. 4. Input parameters The mechanical parameters adopted to simulate the experimental test previously presented are introduced in this section.
4.1. Detailed micro-modeling
Tables 1-3 summarize the input parameters adopted for bricks, mortar, and interfaces. Because most of the parameters needed for modeling are not reported in the source document, some parameters have been taken from simulation works done on the same experimental arch, and missing parameters have been assumed based on values commonly used for masonry.
Table 1. Brick and mortar mechanical characteristics. Category Parameter
Value
Source
2/3
K c f b0 /f c0
(ABAQUS, 2010)
CDP
1,16
Dilation angle (ψ)
10°
Assumed
Compressive strength (MPa)
27
(Vermeltfoort, 2001)
Brick
Elastic modulus (MPa)
1000 0.17
Assumed
Poisson’s ratio
(Hejazi and Pourabedin, 2021)
Compressive strength (MPa)
2.5
(Vermeltfoort, 2001)
Mortar
Elastic modulus (MPa)
100 0.17
Assumed
Poisson’s ratio
(Hejazi and Pourabedin, 2021)
Table 2. Brick and mortar inelastic behavior. Compressive behavior (Yang et al., 2019)
Tensile behavior (Angelillo et al., 2014; Aref and Dolatshahi, 2013; Drougkas et al., 2015)
Yield stress (MPa) Inelastic strain
Yield stress (MPa)
Inelastic displacement (mm)
27.00 22.53 13.68
0.00
2.70 1.94 1.00 0.19 0.25 0.21 0.13 0.07
0.00 0.01 0.03 0.08 0.01 0.04 0.08 0
1.03E-03 2.03E-03 3.53E-03 3.53E-03 5.53E-03 1.53E-02 0
Brick
5.02
2.5
2.29 2.14 1.60
Mortar
Table 3. Interface input parameters. Parameter K n K s
t n
t s
G n
G s
μ
Value Source
70 N/mm 3 30 N/mm 3 0,3 N/mm² 0,36 N/mm² 0,012 N/mm 0,0335 N/mm
0,364
Assumed
(Milani et al., 2008)
(Angelillo et al., 2014)
(Milani et al., 2008)
4.2. Multi-scale modeling In the following, the proposed homogenization technique is applied to derive the CDP average parameters of the homogenized masonry. The homogenization principle is to exploit the periodicity of masonry to reduce the analysis to the level of a representative volume element. The homogenized mechanical characteristics of this RVE will constitute the input parameters of the homogenized macro-model, see Fig. 3. Equivalent stress and strain tensors of the homogenized
Made with FlippingBook Ebook Creator