PSI - Issue 37

Khalil Naciri et al. / Procedia Structural Integrity 37 (2022) 469–476 Khalil Naciri et al. / Structural Integrity Procedia 00 (2019) 000 – 000

472

4

At the end of the test, two hinges developed due to the rotation of supports. Two more hinges developed, one under the load position 2 and the other just to the left of the load position 4. 4. Input parameters The mechanical parameters adopted to simulate the experimental test previously presented are introduced in this section.

4.1. Detailed micro-modeling

Tables 1-3 summarize the input parameters adopted for bricks, mortar, and interfaces. Because most of the parameters needed for modeling are not reported in the source document, some parameters have been taken from simulation works done on the same experimental arch, and missing parameters have been assumed based on values commonly used for masonry.

Table 1. Brick and mortar mechanical characteristics. Category Parameter

Value

Source

2/3

K c f b0 /f c0

(ABAQUS, 2010)

CDP

1,16

Dilation angle (ψ)

10°

Assumed

Compressive strength (MPa)

27

(Vermeltfoort, 2001)

Brick

Elastic modulus (MPa)

1000 0.17

Assumed

Poisson’s ratio

(Hejazi and Pourabedin, 2021)

Compressive strength (MPa)

2.5

(Vermeltfoort, 2001)

Mortar

Elastic modulus (MPa)

100 0.17

Assumed

Poisson’s ratio

(Hejazi and Pourabedin, 2021)

Table 2. Brick and mortar inelastic behavior. Compressive behavior (Yang et al., 2019)

Tensile behavior (Angelillo et al., 2014; Aref and Dolatshahi, 2013; Drougkas et al., 2015)

Yield stress (MPa) Inelastic strain

Yield stress (MPa)

Inelastic displacement (mm)

27.00 22.53 13.68

0.00

2.70 1.94 1.00 0.19 0.25 0.21 0.13 0.07

0.00 0.01 0.03 0.08 0.01 0.04 0.08 0

1.03E-03 2.03E-03 3.53E-03 3.53E-03 5.53E-03 1.53E-02 0

Brick

5.02

2.5

2.29 2.14 1.60

Mortar

Table 3. Interface input parameters. Parameter K n K s

t n

t s

G n

G s

μ

Value Source

70 N/mm 3 30 N/mm 3 0,3 N/mm² 0,36 N/mm² 0,012 N/mm 0,0335 N/mm

0,364

Assumed

(Milani et al., 2008)

(Angelillo et al., 2014)

(Milani et al., 2008)

4.2. Multi-scale modeling In the following, the proposed homogenization technique is applied to derive the CDP average parameters of the homogenized masonry. The homogenization principle is to exploit the periodicity of masonry to reduce the analysis to the level of a representative volume element. The homogenized mechanical characteristics of this RVE will constitute the input parameters of the homogenized macro-model, see Fig. 3. Equivalent stress and strain tensors of the homogenized

Made with FlippingBook Ebook Creator