PSI - Issue 37
M. Annor-Nyarko et al. / Procedia Structural Integrity 37 (2022) 225–232 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
232
8
He, Y., Isozaki, T., 2000. Fracture mechanics analysis and evaluation for the RPV of the Chinese Qinshan 300 MW NPP under PTS. Nuclear Engineering and Design 201, 121-137.https://doi.org/10.1016/S0029-5493(00)00271-5 Holman, J.P., 2010. Heat Transfer, Tenth Edition ed. McGraw-Hill Companies, Inc, New York,USA. Huang, K.R., Huang, C.C., Chou, H.W., 2016. Deterministic and Probabilistic Fracture Mechanics Analysis for Structural Integrity Assessment of Pressurized Water Reactor Pressure Vessel. J Press Vess-T Asme 138.Artn 031202 10.1115/1.4032110 Miranda, S., 2018. Anticipated Operational Occurrences That Could Develop into Serious Accidents. Journal of Nuclear Engineering and Radiation Science 4, 1-14.https://doi.org/10.1115/1.4038160 Mora, D.F., Mukin, R., Costa Garrido, O., Niffenegger, M., 2019. Fracture Mechanics Analysis of a PWR Under PTS Using XFEM and Input From TRACE, Proceedings of the ASME 2019 Pressure Vessels & Piping Conference, San Antonio, Texas, USA.https://doi.org/10.1115/PVP2019-94019 Murtaza, U.T., Hyder, M.J., 2018. Fracture analysis of the set-in nozzle of a PWR reactor pressure vessel - Part 1: Determination of critical crack. Engineering Fracture Mechanics 192, 343-361.http://dx.doi.org/10.1016/j.engfracmech.2016.03.049 NEA/IAEA, 2010. Nuclear Power Plant Operating Experience from the IAEA/NEA International Reporting System for Operating Experience 2005 – 2008. International atomic energy agency, Vienna. NEA/IAEA, 2020. Nuclear Power Plant Operating Experiences from the IAEA/NEA Incident Reporting System 2015-2017. International atomic energy agency, Vienna Niffenegger, M., Reichlin, K., 2012. The proper use of thermal expansion coefficients in finite element calculations. Nuclear Engineering and Design 243, 356-359.https://doi.org/10.1016/j.nucengdes.2011.12.006 Odette, G.R., Yamamoto, T., Williams, T.J., Nanstad, R.K., English, C.A., 2019. On the history and status of reactor pressure vessel steel ductile to brittle transition temperature shift prediction models. J. Nucl. Mater. 526, 151863.https://doi.org/10.1016/j.jnucmat.2019.151863 Schlichting, H., Gersten, K., 2017. Boundary-Layer Theory, Ninth Edition ed. Springer-Verlag Berlin Heidelberg. Thamaraiselvi, K., Vishnuvardhan, S., 2020. Fracture studies on reactor pressure vessel subjected to pressurised thermal shock: A review. Nuclear Engineering and Design 360, 110471.https://doi.org/10.1016/j.nucengdes.2019.110471 Trampus, P., 2018. Pressurized Thermal Shock analysis of the reactor pressure vessel. Procedia Struct Inte 13, 2083-2088. https://doi.org/10.1016/j.prostr.2018.12.204 USNRC, 1988. USNRC Regulatory Guide 1.99, Rev. 2, in: USNRC (Ed.), Washington, DC Wang, M.J., Zuo, Q.L., Yu, H., Tian, W.X., Su, G.H., Qiu, S.Z., 2017. Multiscale Thermal Hydraulic Study under the Inadvertent Safety Injection System Operation Scenario of Typical Pressurized Water Reactor. Sci Technol Nucl Ins 2017, 1-15.https://doi.org/10.1155/2017/2960412 Yu, M.F., Chao, Y.J., Luo, Z., 2015. An Assessment of Mechanical Properties of A508-3 Steel Used in Chinese Nuclear Reactor Pressure Vessels. J Press Vess-T Asme 137. https://doi.org/10.1115/PVP2014-28993
Made with FlippingBook Ebook Creator