PSI - Issue 37

Dmitrijs Serdjuks et al. / Procedia Structural Integrity 37 (2022) 555–562 Dmitrijs Serdjuks et al. / Structural Integrity Procedia 00 (2019) 000 – 000

562

8

Acknowledgements This research was supported by the Latvian Counc il of Science funded project “Method of correlation of coaxial accelerations in 6- D space for quality assessment of structural joints (COACCEL)” (Nr. lzp -2020/1-0240). References Ahmad, A., Bond, L.J., 2018. Fundamentals of ultrasonic inspection. ASM Int. 17, 155 – 168. Baszeń, M. , 2017. Semi-rigid Behavior of Joints in Wood Light-frame Structures. Procedia Engineering 172, 88-95. Castellini, P., Martarelli, M., Tomasini, E.P., 2006. Laser doppler vibrometry: development of advanced solutions answering to technology's needs. Mech. Syst. Signal Process. 20 (6), 1265 – 1285. Chittiprolu, R., Ramancharla, P. K., 2014. Seismic Safety of Joints in Precast Buildings. A State-of-the-art Literature Review. Int. Seminar REDECON 2014, 9-13 November 2014, Bangalore, India. Dobre, D., Dragomir, C.S., 2017. Dynamic characteristics of buildings from signal processing of ambient vibration. IOP Conf. Series: Materials Science and Engineering 245, paper #022087. EN 1993-1-8, 2005. Eurocode 3: Design of steel structures - Part 1-8: Design of joints. CEN, Brussels. Faridmehr, I., Tahir, M. Md., Osman, M. H., Razavykia, A., (2019). An overview of the connection classification index. Advanced Steel Construction 15, 145 – 156. Hanly, S. W., 2016. Shock & Vibration Testing Overview. Engineering ebook, p.69. Heller, H., Jacobs, L., Qu, J., 2000. Characterization of adhesive bond properties using Lamb waves. NDT & E International 33, 555-563. Hoksbergen, J., 2013. Advanced high-frequency 6-DOF vibration testing using the Tensor. Sound and Vibration 47(3). ISO 14963. 2003. Mechanical vibration and shock — Guidelines for dynamic tests and investigations on bridges and viaducts. CEN, Brussels. ISO 4866, 2010. Mechanical vibration and shock — Vibration of fixed structures — Guidelines for the measurement of vibrations and evaluation of their effects on structures. CEN, Brussels. Jeon, H., Kim, Y., Lee, D., Myung, H., 2014. Vision-based remote 6-DOF structural displacement monitoring system using a unique marker. Smart Structures and Systems 13(6), 927-942. Muttillo, M., Stornelli, V., Alaggio, R., Paolucci, R., Di Battista, L., de Rubeis, T., Ferri, G., 2020. Structural Health Monitoring: An IoT Sensor System for Structural Damage Indicator Evaluation. Sensors 20(17), paper #4908. Nguyen, T.H.A., 2020. Vibration testing for dynamic properties of building floors. IOP Conf. Ser.: Mater. Sci. Eng. 869, paper #052005. Park, H.S., Oh, B.K., 2018. Real-time structural health monitoring of a supertall building under construction based on visual modal identification strategy. Autom. Constr. 85, 273 – 289. Sagiroglu, M., Aydin, A.C., 2015. Design and analysis of non-linear space frames with Semi-rigid connections. Steel and Composite Structures 18, 1405-1421. Šabatka, L., Kolaja, D., Vild, M., Wald, F., Kuříková, M., Kabeláč , J., 2019. Influence of joint stiffness on design of steel members. Advances and Trends in Engineering Sciences and Technologies III. CRC Press. Tol Ş., Özgüven , H.N., 2012. Dynamic characterization of structural joints using FRF decoupling. Proceedings of the SEM IMAC XXX Conference 5, 449-460. Topcijs, K., 2021. Steel structures joints quality analysis with vibration loads. Master thesis. Riga Technical university, Riga, p.105. Varanis, M., Silva, A.L., Mereles, A.G., 2018. On mechanical vibration analysis of a multi degree of freedom system based on arduino and MEMS accelerometers. Rev. Bras. Ensino Fis. 40, e1304 – e1314. Zeighami, M., Honarvar, M., 2009. New approaches for testing of adhesive joints by ultrasonic C-scan imaging technique. Materials Evaluation 67(8), 935 – 45.

Made with FlippingBook Ebook Creator