PSI - Issue 36

Volodymyr Iasnii et al. / Procedia Structural Integrity 36 (2022) 284–289 Volodymyr Iasnii, Lukasz Sobaszek, Petro Yasniy / Structural Integrity Procedia 00 (2021) 000 – 000

289

6

Dolce, M., Cardone, D., 2001. Mechanical behaviour of shape memory alloys for seismic applications 2. Austenite NiTi bars subjected to torsion, Int. J. Mech. Sci., 43(11), pp. 2631 – 56. Dolce, M., Cardone, D., Ponzo, F.C., Valente, C., 2005. Shaking table tests on reinforced concrete frames without and with passive control systems, Earthq. Engng Struct. Dyn., 34(June), pp. 1687 – 717, Doi: 10.1002/eqe.501. E.C. (2005) for S. (CEN). (2011). Eurocode 8 - Design of structures for earthquake resistance - Part 2: Bridges (EN 1998-2:2005+A2). vol. September, Bruxelles, Belgium, The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC, p. 153. Iasnii, V.P., 2020. Technique and some study results of shape memory alloy-based damping device functional parameters, Sci. J. TNTU 97(1), 37 – 44. Iasnii, V., Yasniy, P., 2019. Degradation of functional properties of pseudoelastic NiTi alloy under cyclic loading: an experimental study, Acta Mech. Autom. 13(2), 5 – 9, Doi: 10.2478/ama-2019-0013. Iasnii, V., Yasniy, P., Lapusta, Y., Shnitsar, T., 2018. Experimental study of pseudoelastic NiTi alloy under cyclic loading, Sci. J. TNTU 92(4), 7 – 12. Iasnii, V. P., Junga, R., 2018. Phase Transformations and Mechanical Properties of the Nitinol Alloy with Shape Memory. Materials Science 54(3), 406 – 411. International Code Council, 2006. 2006 International Building Code, Falls Church, VA. Morais, J., de Morais, P.G., Santos, C., Costa, A.C., Candeias, P., 2017. Shape Memory Alloy Based Dampers for Earthquake Response Mitigation, Procedia Struct. Integr. 5, 705 – 12. Doi: 10.1016/J.PROSTR.2017.07.048. Ozbulut, O.E., Hurlebaus, S., Desroches, R., 2011. Seismic response control using shape memory alloys: A review, J. Intell. Mater. Syst. Struct. 22(14), 1531 – 49. Doi: 10.1177/1045389X11411220. Predki, W., Klönne, M., Knopik, A. , 2006. Cyclic torsional loading of pseudoelastic NiTi shape memory alloys: Damping and fatigue failure, Mater. Sci. Eng. A 417(1 – 2), 182 – 9, Doi: 10.1016/j.msea.2005.10.037. Qiang, P., Cho, C., 2007. The Investigation of a Shape Memory Alloy Micro-Damper for MEMS Applications, Sensors 7, 1887 – 900. Doi: 10.3390/s7091887. Silva, P., Almeida, J., Guerreiro, L., 2015. Semi-active Damping Device Based on Superelastic Shape Memory Alloys, Structures 3, 1 – 12, Doi: 10.1016/j.istruc.2015.06.006. Soul, H., Yawny, A., 2015. Self-centering and damping capabilities of a tension-compression device equipped with superelastic NiTi wires, Smart Mater. Struct. 24(7), 075005. Doi: 10.1088/0964-1726/24/7/075005. Torra, V., Auguet, C., Carreras, G., Dieng, L., Lovey, F.C., Terriault, P., 2012. The SMA: An Effective Damper in Civil Engineering that Smoothes Oscillations, Mater. Sci. Forum 706 – 709, 2020 – 5, Doi: 10.4028/www.scientific.net/MSF.706-709.2020. Yasniy, P. V., Hlado, V.B., Hutsaylyuk, V.B., Vuherer, T., 2005. Microcrack initiation and growth in heat-resistant 15Kh2MFA steel under cyclic deformation, Fatigue Fract. Eng. Mater. Struct. 28(4), 391 – 7. Doi: 10.1111/j.1460-2695.2005.00870.x. Yasniy, P., Iasnii, V., 2019. Damping device for transportation long structures. Patent of Ukraine 120147 10.10.2019.

Made with FlippingBook - Online magazine maker