PSI - Issue 36

Odarka Prokhorenko et al. / Procedia Structural Integrity 36 (2022) 290–297 8 Odarka Prokhorenko, Serhii Hainutdinov, Volodymyr Prokhorenko et al. / Structural Integrity Procedia 00 (2021) 000 – 000 5. Conclusions In the residual state the weld and HAZ consist of ferrite by (99.44…100)%, while bainite, martensite and austenite are account for (0…0.056)% only. The distribution of phases along the length of the weld is uneven within their values and quantitatively decreases with the increase in the distance from the weld axis. At the beginning and at the end of the weld, the increased values of bainite and decreased amount of ferrite are observed within their values, in accordance with the kinetics of temperature in the nodes of the calculated model during welding. References Goldak, J. A., Akhlagi, M., 2005. Computational Welding Mechanics. U.S., Springer. Haievskyi, O. A., Kvasnytskyi, V. F., Haievskyi, V. O., Zvorykin, C. O., 2020. Analysis of the influence of system welding coordination on the quality level of joints. Eastern-European journal of enterprise technologies 5/1(107), 98-109. Khudyakov, A., Korobov, Yu., Danilkin, P., Kvashnin V., 2019. Finite element modeling of multiple electrode submerged arc welding of large diameter pipes IOP Conf. Series: Materials Science and Engineering 681, 012025. Koistinen, D. P., Marburger, R. E., 1959. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metallurgies 7, 59-60. Leblond, J. B., Fortunier, R., Bergheau, J. M., 2000. A numerical model for multiple phase transformations in steels during thermal processes. Journal of Shanghai Jiaotong University (Science) E-5(1), 213-220. Lobanov, L. M., Yermolayev, H. V., Kvasnytsʹkyy , V. V., Makhnenko, O. V., Yehorov, H. V., Labartkava, A. V., 2016. Napruzhennya ta deformatsiyi pry zvaryuvanni i payanni. Mykolayiv: NUK, 246 p. Makhnenko, V. I., 1976. Raschetnyye issledovaniya kinetiki svarochnykh napryazheniy i deformatsiy. Kiyev: «Naukova dumka», 1976. Nikolayev, G.A., Vinokurov ,V.A., 1990. Svarnyye konstruktsii. Raschet i proyektirovaniye. M.: Vysshaya shkola. 1990. 446 p. Nikolayev, G.A., Kurkin, S.A., Vinokurov, V.A., 1982. Svarnyye konstruktsii. Prochnost' svarnykh soyedineniy i deformatsii konstruktsiy. - M.: Vysshaya shkola. 1982. 272 p. Prokhorenko, V. M., Prokhorenko, D. V., Zvorykin, C. O., Hainutdinov, S. F., 2019. Kinetics of strains during single-pass fusion welding of a symmetrical butt joint. Technological Systems 3 (88), 87 – 98. Prokhorenko, V. М., Prokhorenko , D. V., Hainutdinov, S. F., Perepichay, A. A., 2018. Kinetics of temperature and plastic strains during heating a longitudinal edge of a steel band by moving welding heat source. Technological systems 3(84), 63-77. Sagalevich, V. M., 1974. Metody ustraneniya svarnykh deformatsiy i napryazheniy. – M.:Mashinostroyeniye 188 s. Slyvinskyy, O. A, Chvertko, Y., Bisyk, S., 2019. Effect of welding heat input on heat-affected zone softening in quenched and tempered armor steels. High Temperature Material Processes An International Quarterly of High-Technology Plasma Processes 23 (3), 239 – 253. Slyvinskyy, O. A., Prepiialo, A. O., Bondarenko, V. L., Slyuta, V. P., 2014. Calculation and experimental analysis of thermal processes of thin sheet stainless steel welding using TIG and CMT methods‖, Technological Systems 1, 76 -82. SYSWELD, 2015. Reference manual version. ESI Group Talypov, G. B., 1973. Svarochnyye deformatsii i napryazheniya. L.: Mashinostroyeniye 280 s. Trochun, I. P., 1964. Vnutrenniye usiliya i deformatsii pri svarke. M.: Mashgiz 248 s. Tsvetkov, F. F., Grigor'yev, B. A., 2006. Teplomassoobmen. M.: MEI,550 s. Vinokurov, V. A., 1968. Svarochnyye deformatsii i napryazheniya. M.: Mashinostroyeniye 236 s. Zienkiewicz, O. C., Taylor, R. L., Fox, D. D., 2014. The finite element method for solid and structural mechanics. Elsevier, 657 p. 297

Made with FlippingBook - Online magazine maker