PSI - Issue 35

Galina Eremina et al. / Procedia Structural Integrity 35 (2022) 115–123

122

8

Galina Eremina et al.,/ Structural Integrity Procedia 00 (2021) 000–000

Acknowledgements The investigation has been carried out at financial support of the Russian Science Foundation (Project No. 21-79 00296). References Anderson, A.E., Ellis B.J., Weiss J., 2007. Verification, methods in validation biomechanics and sensitivity biomedical studies engineering. Journal of computational biomechanics. 10(3), 171–184. Argoubi, M., Shirazi-Adl, A., 1996. Poroelastic creep response analysis of a lumbar motion segment in compression. Journal of biomechanics, 29(10), 1331-1339. Banse, X., Sims, T.J., Bailey, A.J., 2002. Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. Journal of Bone and Mineral Research. 17(9), 1621-1628. Castro, A.P.G., Alves, J.L., 2020. Numerical implementation of an osmo-poro-visco-hyperelastic finite element solver: application to the intervertebral disc. Computer Methods in Biomechanics and Biomedical Engineering. 24(5), 538-550. Chagnon, A., Aubin, C.E., Villemure I., 2010. Biomechanical influence of disk properties on the load transfer of healthy and degenerated disks using a poroelastic finite element model. Journal of Biomechanical Engineering. 132(11), 111006. Choi, J., Shin, D.A., Kim S., 2017. Biomechanical Effects of the Geometry of Ball-and-Socket Artificial Disc on Lumbar Spine: A Finite Element Study. Spine (Phila Pa 1976). 42(6), E332-E339. Chirkov, A., Eremina, G.M, Smolin, A.Yu., Eremin M.O., 2020. Numerical research of mechanical behavior of biological tissues under uniaxial compression/tension. AIP Conference Proceedings. 2310, 020063. Christiansen, B.A., Kopperdahl, D.L., Kiel, D.P., Keaveny, T.M., Bouxsein, M.L., 2011. Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. Journal of Bone and Mineral Research. 26(5), 974 983. Cloyd, J. M., Malhotra, N. R., Weng, L., Chen, W., Mauck, R. L., Elliott, D. M., 2007. Material properties in unconfined compression of human nucleus pulposus, injectable hyaluronic acid-based hydrogels and tissue engineering scaffolds. European spine journal. 16(11), 1892–1898. Dall'Ara, E, Karl, C, Mazza, G, Franzoso, G, Vena, P, Pretterklieber, M, Pahr, D, Zysset P. 2013.Tissue properties of the human vertebral body sub-structures evaluated by means of microindentation. Journal of the Mechanical Behavior of Biomedical Materials. 25, 23-32. Damm, T., Peña, J.A., Campbell, G.M., Bastgen, J., Barkmann, R., Glüer, C.C., 2019. Improved accuracy in the assessment of vertebral cortical thickness by quantitative computed tomography using the Iterative Convolution OptimizatioN (ICON) method. Bone 120, 194-203 Donnelly E., 2011. Methods for assessing bone quality: a review. Clinical orthopaedics and related research. 469(8), 2128–2138. Eremina, G.M., Smolin, A.Y., Shilko, E.V., 2019. Numerical modeling of the indentation of cancellous bone. AIP Conference Proceedings 2167(1), 020090. Eremina, G.M., Smolin, A.Y., 2021. Risk assessment of resurfacing implant loosening and femur fracture under low-energy impacts taking into account degenerative changes in bone tissues. Computer simulation. Computer Methods and Programs in Biomedicine. 200, 105929 (2021). Fan, R. X., Liu, J., Li, Y. L., Liu, J., Gao, J.Z., 2018. Finite Element Investigation of the Effects of the Low-Frequency Vibration Generated by Vehicle Driving on the Human Lumbar Mechanical Properties. BioMed research international, 2018, 7962414. Frost, B. A., Camarero-Espinosa, S., Foster, E.J., 2019. Materials for the Spine: Anatomy, Problems, and Solutions. Materials (Basel, Switzerland), 12(2), 253. Garo A., Arnoux P.J., Aubin C.E., 2009. Estimation of bone material properties using an inverse finite element method. Computer Methods in Biomechanics and Biomedical Engineering, 12(1), 121–122. Ghezelbash, F., Shirazi-Adl, A., Baghanim, M., Eskandari, A.H., 2020. On the modeling of human intervertebral disc annulus fibrosus: Elastic, permanent deformation and failure responses. Journal of Biomechanics. 102, 109463. Ghezelbash, F., Eskandari, A. H., Shirazi-Adl, A., Kazempour, M., Tavakoli, J., Baghani, M., & Costi, J.J., 2021. Modeling of human intervertebral disc annulus fibrosus with complex multi-fiber networks. Acta Biomaterialia, 123, 208–221. Gómez, F.S., Lorza, R.L., Bobadilla, M.C., García, R.E., 2017. Improving the Process of Adjusting the Parameters of Finite Element Models of Healthy Human Intervertebral Discs by the Multi-Response Surface Method. Materials (Basel). 10(10), 1116. Haj-Ali, R., Massarwa, E., Aboudi, J., Galbusera, F., Wolfram, U., Wilke. H.-J., 2017. A new multiscale micromechanical model of vertebral trabecular bones. Biomechanics and Modeling in Mechanobiology. 16, 933–946. Henninger, H.B., Reese, S.P., Anderson, A.E., Weiss, J.A., 2010. Validation of computational models in biomechanics. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine, 224(7), 801–812. Holzapfel, G.A., Schulze-Bauer, C.A.J., Feig, G., Regitnig, P., Single lamellar mechanics of the human lumbar anulus fibrosus 2005. Biomechanics and modeling in mechanobiology. 3, 125–140. Hu, S., Li, J., Liu, L., Dai, R., Sheng, Z., Wu, X., Feng, X., Yao, X., Liao, E., Keller, E., Jiang, Y., 2015. Micro/Nanostructures and Mechanical Properties of Trabecular Bone in Ovariectomized Rats. International journal of endocrinology, 2015, 252503. Jin, Y., Zhang T., Lui, Y.F., Sze, K.Y., Lu, W.W., 2020. The measured mechanical properties of osteoporotic trabecular bone decline with the increment of deformation volume during micro-indentation. Journal of the Mechanical Behavior of Biomedical Materials. 103, 103546.

Made with FlippingBook flipbook maker