PSI - Issue 34

H. Oberlercher et al. / Procedia Structural Integrity 34 (2021) 111–120 Hannes Oberlercher/ Structural Integrity Procedia 00 (2019) 000 – 000

119

9

Various consolidation models have already been developed to predict the intimate contact of the composite material. But this consolidation models mainly developed for the conventional manufacturing processes (Moser, 2014). However, the validity for the 3D-printing process has yet to be proven and new models may need to be developed. The following process would be a first approach for a development of a 3D printing consolidation model (3DPCM): Initial calculations based on different consolidation models must be performed. With the first results, tests will be carried out and the results are compared with the theoretical values. Several iterations will be necessary to optimize the microstructure and mechanical properties of the material. These iteration loops, the consolidation model will be revised and the individual parameters (pressure, temperature, speed, ...) will be optimized (see Figure 10).

Figure 10: Concept of a development stagey of an 3D printing consolidation model with thermoplastic matrix material.

5 References Akira, T., et al. 2019. Tensile property evaluations of 3D printed continuous carbon fiber reinforced thermoplastic. s.l. : Advanced Composite Material, 2019. Baur, E., Harsch, G. und Moneke, M. 2019. Werkstoff-Führer Kunststoffe. München : Carl Hanser, 2019. Blok, L.G., et al. 2017. An investigation into 3D printing of fibre reinforced thermoplastic composites. s.l. : Elsevier Additve Manufacturing, 2017. Caminero, M.A., et al. 2018. Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. s.l. : Elsevier Polymer Testing, 2018. Chacon, J.M., et al. 2019. Additive manufacturing of continuous fibre reinforced thermoplastic composites using fused deposition modelling: Effect of process parameters on mechanical properties. s.l. : Elsevier Composites Science and Technology, 2019. Ehrenstein, W. G. 2018. Faserverbund-Kunststoffe: Werkstoffe - Verarbeitung - Eigenschaften. München : Carl Hanser Verlag GmbH Co KG, 2018. Guglhör, T. 2017. Experimentelle und modellhafte Betrachtung des Konsolidierungsprozesses von carbonfaserverstärktem Polyamid-6. Augsburg : s.n., 2017. Heim, R. 2020. Mikrostrukturelle Analyse eines additiv gefertigten Endlosfaserverbundwerkstoffes. Österreich/Villach : s.n., 2020. Henninger, F. 1998. Deconsolidation behaviour of glass fibrepolyamide 12 composite sheet material during post processing. . s.l. : Plastics rubber and composites processing and applications, 1998. Moser, M. 2014. Konsolidierung thermoplastischer Verbundwerkstoffe – Phänomene, Modellvorstellungen und Vorhersagefähigkeit. Leoben : s.n., 2014. Parmiggiani, A., Prato, M. und Pizzorni, M. 2021. Effect of the fiber orientation on the tensile and flexural behavior of continuous carbon fiber composites made via fused filament fabrication. s.l. : Springer, 2021. Schürmann, H. 2007. Konstruieren mit Faser-Kunststoff-Verbunden. Darmstadt : Springer, 2007. 978-3-540 72189-5. Tian, Xiaoyong, et al. 2016. Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites. s.l. : Elsevier Composites Part A, 2016. Ueda, M., et al. 2020. 3D compaction printing of a continuous carbon fiber reinforced thermoplastic. s.l. : Elsevier

Made with FlippingBook Ebook Creator