PSI - Issue 34

12

Tim Koenis et al. / Procedia Structural Integrity 34 (2021) 235–246 Tim Koenis et al. / Structural Integrity Procedia 00 (2019) 000 – 000

246

De Baere, D., Moshiri, M., Mohanty, S., Tosello, G., & Hattel, J., 2020. Numerical Investigation into the Effect of Different Parameter on the Geometrical Precision in the LAser-Based Powder Bed Fusion Process Chain. Applied Sciences 10, 3414. Denlinger, E., Heigel, J., & Michaleris, P., 2014. Residual stress and distortion modeling of electron beam direct manufacturing Ti-6Al-4V. Journal of Engineering Manufacture 229, 1803-1813. Doege, E., Meyer-Nolkemper, H., & Saeed, I., 1986. Fließkurvenatlas metallischer Werkstoffe: Mit Fließkurven f ü r 73 Werkstoffe und einer grundlegenden Einf ü hrung. Hanser, M ü nchen. Edwards, P., & Ramulu, M., 2014. Fatigue performance evaluation of selective laser melted Ti-6Al-4V. Materials Science and Engineering 598, 327-337. Frazier, W., 2014. Metal Additive Manufacturing: A Review. Journal of Materials Engineering and Performance 23, 1917-1928. Heigel, J., Michaleris, P., & Reutzel, E., 2015. Thermo-mechanical model development and validation of directed energy deposition additive manufacturing of Ti-6Al-4V. Additive Manufacturing 5, 9-19. O'Brien, J., Montgomery, S., Yaghi, A., & Afasov, S., 2021. Process chain simulation of laser powder bed fusion including heat treatment and surface hardening. CIRP Journal of Manufacturing Science and Technology 32, 266-276. Oliveira, V., da Silva, M., Pinto, C., Suzuki, P., Machado, J., Chad, V., & Barboza, M., 2015. Short-term creep properties of Ti-6Al-4V alloy subjected to surface plasma carburizing process. Journal of Materials Research and Technology 4, 359-366. Rohde, J., & Jeppsson, A., 2000. Literature review of heat treatment simulations with repsect to phase transformation, residual stresses and distortion. Scandinavian Journal of Metallurgy 29, 47-62. Salonitis, K., D'Alvise, L., Schoinochoritis, B., & Chantzis, D., 2016. Additive manufacturing and post-processing simulation: cladding followed by high speed machining. International Journal of Advanced Manufacture Technology 85, 2401-2411. Schoinochoritis, B., Chantzis, D., & Salonitis, K., 2015. Simulation of metallic powder bed additive manufacturing processes with the finite element method: A critical review. Journal of Engineering Manufacture 231, 96 117. Spittel, T., & Spittel, M., 2011. Part 2: Non-ferrous Alloys - Light Metals. Heidelberg, Berlin. Sterling, A., Torries, B., Shamsaei, N., Thompson, S., & Seely, D., 2016. Fatigue Behavior and Failure Mechanisms of Direct Laser Deposited Ti-6Al-4V. Materials Science and Engineering 655, 100-112. Uriondo, A., Miguez, M., & Perinpanayagam, S., 2015. The present and future of additive manufacturing in the aerospace sector: A review of important aspects. Journal of Aerospace Engineering 229, 1-16. Wycisk, E., Solbach, A., Siddique, S., Herzog, D., Walther, F., & Emmelmann, C., 2014. Effects of Defects in Laser Additive Manufactured Ti6Al4V on Fatigue Properties. Physics Procedia 56, 371-378. Yadollahi, A., & Shamsaei, N., 2017. Additive Manufacturing of Fatigue Resisitant Materials: Challenges and Oppertunities. International Journal of Fatigue 98, 14-31. Yadollahi, A., Shamsaei, N., Thompson, S. M., Elwany, A., & Bian, L., 2017. Effects of building orientation and heat treatment on fatigue behavior of selective laser melted 17-4 PH stainless steel. International Journal of Fatigue 94, 218-235. Yan, G., Grivoi, A., Sun, Y., Maharjan, N., Song, X., Li, F., & Tan, M., 2018. An Arrhenius equation-based model to predict the residual stress relief of post weld heat treatment of Ti-6Al-4V plate. Journal of Manufacturing Processes 32, 763-772. Ye, J., Rubenchik, A., Crumb, M., Guss, G., &Matthews, M., 2018. Laser Absorption and Scaling Behavior in Powder Bed Fusion Additive Manufacturing of Metals. 2018 Conference on Lasers and Electro-Optics (CLEO).

Made with FlippingBook Ebook Creator