PSI - Issue 34

E. Maleki et al. / Procedia Structural Integrity 34 (2021) 141–153 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

152 12

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H., 2007. Greedy layer-wise training of deep networks, in: Advances in Neural Information Processing Systems. https://doi.org/10.7551/mitpress/7503.003.0024 Chen, J., Liu, Y., 2021. Fatigue property prediction of additively manufactured Ti-6Al-4V using probabilistic physics-guided learning. Addit. Manuf. https://doi.org/10.1016/j.addma.2021.101876 DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., Zhang, W., 2018. Additive manufacturing of metallic components – Process, structure and properties. Prog. Mater. Sci. https://doi.org/10.1016/j.pmatsci.2017.10.001 EN ISO 4287, 1997. Geometrical Product Specifications (GPS) - Surface texture: Profile method - Terms, definitions and surface texture parameters. Int. Organ. Stand. Feng, S., Zhou, H., Dong, H., 2019. Using deep neural network with small dataset to predict material defects. Mater. Des. 162, 300 – 310. https://doi.org/10.1016/j.matdes.2018.11.060 Ferro, P., Fabrizi, A., Berto, F., Savio, G., Meneghello, R., Rosso, S., 2020. Defects as a root cause of fatigue weakening of additively manufactured AlSi10Mg components. Theor. Appl. Fract. Mech. https://doi.org/10.1016/j.tafmec.2020.102611 Gardan, J., 2016. Additive manufacturing technologies: State of the art and trends. Int. J. Prod. Res. https://doi.org/10.1080/00207543.2015.1115909 Hamidi Nasab, M., Gastaldi, D., Lecis, N.F., Vedani, M., 2018. On morphological surface features of the parts printed by selective laser melting (SLM). Addit. Manuf. https://doi.org/10.1016/j.addma.2018.10.011 Herzog, D., Seyda, V., Wycisk, E., Emmelmann, C., 2016. Additive manufacturing of metals. Acta Mater. https://doi.org/10.1016/j.actamat.2016.07.019 Hinton, G.E., Osindero, S., Teh, Y.W., 2006. A fast learning algorithm for deep belief nets. Neural Comput. https://doi.org/10.1162/neco.2006.18.7.1527 Hinton, G.E., Salakhutdinov, R.R., 2006. Reducing the dimensionality of data with neural networks. Science (80-. ). https://doi.org/10.1126/science.1127647 Lewandowski, J.J., Seifi, M., 2016. Metal Additive Manufacturing: A Review of Mechanical Properties. Annu. Rev. Mater. Res. https://doi.org/10.1146/annurev-matsci-070115-032024 Li, R., Liu, J., Shi, Y., Wang, L., Jiang, W., 2012. Balling behavior of stainless steel and nickel powder during selective laser melting process. Int. J. Adv. Manuf. Technol. https://doi.org/10.1007/s00170-011-3566-1 Liu, G., Bao, H., Han, B., 2018. A Stacked Autoencoder-Based Deep Neural Network for Achieving Gearbox Fault Diagnosis. Math. Probl. Eng. https://doi.org/10.1155/2018/5105709 Livingstone, D.J., Manallack, D.T., Tetko, I. V., 1997. Data modelling with neural networks: Advantages and limitations. J. Comput. Aided. Mol. Des. https://doi.org/10.1023/A:1008074223811 Maleki, E., 2015. Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075-T6 aluminum alloy, in: IOP Conference Series: Materials Science and Engineering. https://doi.org/10.1088/1757-899X/103/1/012034 Maleki, E., Bagherifard, S., Bandini, M., Guagliano, M., 2021a. Surface post-treatments for metal additive manufacturing: Progress, challenges, and opportunities. Addit. Manuf. 37, 101619. https://doi.org/10.1016/j.addma.2020.101619 Maleki, Erfan, Bagherifard, S., Guagliano, M., 2021. Application of artificial intelligence to optimize the process parameters effects on tensile properties of Ti-6Al-4V fabricated by laser powder-bed fusion. Int. J. Mech. Mater. Des. https://doi.org/10.1007/s10999-021-09570-w Maleki, E., Bagherifard, S., Razavi, S.M.J., Riccio, M., Bandini, M., du Plessis, A., Berto, F., Guagliano, M., 2022. Fatigue behaviour of notched laser powder bed fusion AlSi10Mg after thermal and mechanical surface post-processing. Mater. Sci. Eng. A 829, 142145. https://doi.org/10.1016/j.msea.2021.142145 Maleki, E., Farrahi, G.H.H., 2018. Modelling of conventional and severe shot peening influence on properties of high carbon steel via artificial neural network. Int. J. Eng. Trans. B Appl. 31. https://doi.org/10.5829/ije.2017.30.11b.00 Maleki, E., Mirzaali, M.J., Guagliano, M., Bagherifard, S., 2020. Analyzing the mechano-bactericidal effect of nano-patterned surfaces on different bacteria species. Surf. Coatings Technol. https://doi.org/10.1016/j.surfcoat.2020.126782 Maleki, E., Unal, O., 2020a. Optimization of Shot Peening Effective Parameters on Surface Hardness Improvement. Met. Mater. Int. https://doi.org/10.1007/s12540-020-00758-x Maleki, E., Unal, O., 2020b. Fatigue limit prediction and analysis of nano-structured AISI 304 steel by severe shot

Made with FlippingBook Ebook Creator