PSI - Issue 33
Fuzuli Ağrı Akçay et al. / Procedia Structural Integrity 33 (2021) 279 – 286 Author name / Structural Integrity Procedia 00 (2019) 000–000
286
8
References
Akçay, F A., 2020. İzotropik malzemelerin sünek kırılma gezeneklerinin tayini (English: Characterization of ductile fracture loci of isotropic materials). Mühendislik Bilimleri ve Tasarım Dergisi 8(1), 65–73. Baltic, S., Magnien, J, Gänser, H. P., Antretter, T., Hammer, R., 2020. Coupled damage variable based on fracture locus: Prediction of ductile failure in a complex structure. International Journal of Solids and Structures 207, 132–144. Bai, Y., Wierzbicki, T., 2015. A comparative study of three groups of ductile fracture loci in the 3D space. Engineering Fracture Mechanics 135, 147–167. Dong, J. H., Kong, D. Y., Zheng, Z., Yang, B., Elchalakani, M., 2020. A dislocation-movement-and-void-growth-motivated ductile fracture criterion considering size effect. International Journal of Solids and Structures 206, 137–152. Karr, D. G., Akçay, F. A., 2016. A criterion for ductile fracture based on continuum modeling of energy release rates. International Journal of Fracture 197, 201–212. Wierzbicki, T., Bao, Y., Lee, Y. W., Bai, Y., 2005. Calibration and evaluation of seven fracture models. International Journal of Mechanical Sciences 47, 719–743. Xin, H., Veljkovic, M., Correia, J. A., Berto, F., 2021. Ductile fracture locus identification using mesoscale critical equivalent plastic strain. Fatigue & Fracture of Engineering Materials & Structures 44, 1292–1304. Zhu, Y., Engelhardt, M. D., 2018. Prediction of ductile fracture for metal alloys using a shear modified void growth model. Engineering Fracture Mechanics 190, 491–513.
Made with FlippingBook Ebook Creator