PSI - Issue 33
Domenico Ammendolea et al. / Procedia Structural Integrity 33 (2021) 858–870 Domenico Ammendolea et al./ Structural Integrity Procedia 00 (2019) 000 – 000
870
Greco, F., Ammendolea, D., Lonetti, P., Pascuzzo, A., 2021a. Crack propagation under thermo-mechanical loadings based on moving mesh strategy. Theoretical and Applied Fracture Mechanics 114, 103033. Greco, F., Leonetti, L., De Maio, U., Rudykh, S., Pranno, A., 2021b. Macro- and micro-instabilities in incompressible bioinspired composite materials with nacre-like microstructure. Composite Structures 269, 114004. Greco, F., Leonetti, L., Lonetti, P., Luciano, R., Pranno, A., 2020a. A multiscale analysis of instability-induced failure mechanisms in fiber reinforced composite structures via alternative modeling approaches. Composite Structures 251, 112529. Greco, F., Leonetti, L., Luciano, R., Pascuzzo, A., Ronchei, C., 2020b. A detailed micro-model for brick masonry structures based on a diffuse cohesive-frictional interface fracture approach. Procedia Structural Integrity 25, 334-347. Greco, F., Leonetti, L., Medaglia, C. M., Penna, R., Pranno, A., 2018a. Nonlinear compressive failure analysis of biaxially loaded fiber reinforced materials. Composites Part B: Engineering 147, 240-251. Greco, F., Leonetti, L., Pranno, A., Rudykh, S., 2020c. Mechanical behavior of bio-inspired nacre-like composites: A hybrid multiscale modeling approach. Composite Structures 233, 111625. Greco, F., Lonetti, P., Luciano, R., Nevone Blasi, P., Pranno, A., 2018b. Nonlinear effects in fracture induced failure of compressively loaded fiber reinforced composites. Composite Structures 189, 688-699. Greco, F., Lonetti, P., Pascuzzo, A., 2020d. A moving mesh FE methodology for vehicle – bridge interaction modeling. Mechanics of Advanced Materials and Structures 27, 1256-1268. Kuutti, J., Kolari, K., 2012. A local remeshing procedure to simulate crack propagation in quasi ‐ brittle materials. Engineering Computations 29, 125-143. Lonetti, P., Pascuzzo, A., 2014. Design analysis of the optimum configuration of self-anchored cable-stayed suspension bridges. Structural Engineering and Mechanics 51, 847-866. Lonetti, P., Pascuzzo, A., 2016. A numerical study on the structural integrity of self-anchored cable-stayed suspension bridges. Frattura ed Integrita Strutturale 10, 359-376. Lonetti, P., Pascuzzo, A., 2020. A Practical Method for the Elastic Buckling Design of Network Arch Bridges. International Journal of Steel Structures 20, 311-329. Lonetti, P., Pascuzzo, A., Aiello, S., 2019. Instability design analysis in tied-arch bridges. Mechanics of Advanced Materials and Structures 26, 716-726. Lonetti, P., Pascuzzo, A., Davanzo, A., 2016. Dynamic Behavior of Tied-Arch Bridges under the Action of Moving Loads. Mathematical Problems in Engineering 2016, Mazars, J., Pijaudier ‐ Cabot, G., 1989. Continuum Damage Theory—Application to Concrete. 115, 345-365. Murakami, Y., Aoki, S., 1987. Stress Intensity Factors Handbook, Series Stress Intensity Factors Handbook. Pergamon. Ooi, E. T., Song, C., Tin-Loi, F., Yang, Z., 2012. Polygon scaled boundary finite elements for crack propagation modelling. International Journal for Numerical Methods in Engineering 91, 319-342. Pascuzzo, A., Yudhanto, A., Alfano, M., Lubineau, G., 2020. On the effect of interfacial patterns on energy dissipation in plastically deforming adhesive bonded ductile sheets. International Journal of Solids and Structures 198, 31-40. Peerlings, R. H. J., De Borst, R., Brekelmans, W. A. M., De Vree, J. H. P., 1996. GRADIENT ENHANCED DAMAGE FOR QUASI-BRITTLE MATERIALS. 39, 3391-3403. Prasad, N. N. V., Aliabadi, M. H., Rooke, D. P., 1994. Incremental crack growth in thermoelastic problems. International Journal of Fracture 66, R45-R50. Sancho, J. M., Planas, J., Cendón, D. A., Reyes, E., Gálvez, J. C., 2007. An embedded crack model for finite element analysis of concrete fracture. Engineering Fracture Mechanics 74, 75-86. Scuro, C., Lamonaca, F., Codispoti, R., Carnì, D. L., Olivito, R. S., 2018a. Experimental and numerical analysis on masonry arch built with fictile tubules bricks. Measurement 130, 246-254. Scuro, C., Lamonaca, F., Porzio, S., Milani, G., Olivito, R. S., 2021. Internet of Things (IoT) for masonry structural health monitoring (SHM): Overview and examples of innovative systems. Construction and Building Materials 290, 123092. Scuro, C., Tiberti, S., Codispoti, R., Milani, G., Olivito, R. S., 2018b. Fictile tubules: A traditional Mediterranean construction technique for masonry vaulted systems. Construction and Building Materials 193, 84-96. Wang, H. S., 2015. A meshfree variational multiscale methods for thermo-mechanical material failure. Theoretical and Applied Fracture Mechanics 75, 1-7. Wang, S., Zhang, H., 2011. Partition of unity-based thermomechanical meshfree method for two-dimensional crack problems. Archive of Applied Mechanics 81, 1351-1363. Williams, M. L., 1956. On the Stress Distribution at the Base of a Stationary Crack. Journal of Applied Mechanics 24, 109-114. Wilson, W. K., Yu, I. W., 1979. The use of the J-integral in thermal stress crack problems. International Journal of Fracture 15, 377-387. Yau, J. F., Wang, S. S., Corten, H. T., 1980. A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity. Journal of Applied Mechanics 47, 335-341.
Made with FlippingBook Ebook Creator