PSI - Issue 33
Ashley Amanda Freeman et al. / Procedia Structural Integrity 33 (2021) 265–278 Author name / Structural Integrity Procedia 00 (2019) 000–000
272
8
max, , and r h H E ranged from -0.04 to 0.82, -0.02 to 0.77, and 0.28 to 0.89, respectively (Fig. 5
proposed models for
7).
max h , H , and r E . Additionally, adjusted R 2 (Adj. R 2 ) values show the fit of the multivariate model.
Table 3. Summary of regression models for
Additionally, the Cartesians coordinates of the indent location, x and y, are denoted by x 1 and x 2 , respectively.
Spacing ( µm)
Number of variables
Model
Adj. R 2
Regression models for maximum displacement, max h 3 5 6 3 1.66 10 8.74 10 max h y
1 x
0.82
5 4 1.78 10 9.23 10
3
2 1.73 10 5.00 10
3
x
2
1
1 ( 4.75 10 2.44 10 ) x 1 2
1 2
8.91 2.85 10
( 1.68 10 )
x x
x
1 2
1
2
0.11
6
3
4 5.40 10 2.74 10 1 x x x x 1 1 2 4 4.84 10 3.12 10 1 1 1 2 6 1.14 10 2.32 10
4
2 2.91 10 1.45 10
2
3
3
4.57 10 2.06 10
6 ( 2.41 10 1.09 10 ) max h y ( 2.17 10 1.25 10 ) max h y 9
x
x
1
2
1 x
9
3
0.06
4
2 2.62 10 1.65 10
2
3 4.11 10 2.37 10
3
x
2
1 x
14
5
-0.04
6
4 1.23 10 2.50 10
4
2 8.11 10 6.30 10
3
14 max h y
x
2
1
1 3.32 10 6.71 10
1 2
2
4.78 3.40 10
( 1.29 2.10) x
x x
x
1 2
1
2
1 x
35
5
0.03
5 9.02 10 1..35 10
2
1 2.77 10 2.15 10
2
3
3.87 3.27 10
35 max h y
x
2
1 3.59 10 1.76 10
1
1 1.34 10 1.15 ( 9.49 10 1.37) x 2 1
2
x x
x
1 2
1
2
100
2
0.28
1 1.531 10 ( 1.07 10 ) 5.71 ( 5.95 10 ) 2 1
1 3.27( 7.28 10 )
100 max h y
x
x
1
2
Regression models for reduced modulus, r E 3 5 2
0.77
2 (6.96 10 5.06 10 ) (7.43 5.34) x
1 (2.59 10 2.89) x
3 H y
1
2
3 (6.66 10 1.50 10 ) 2
2 (1.97 10 1.41 10 ) 2 2 x
2 ( 4.56 10 9.72 10 ) 3 2 x
x x
1 2
1
2
6
3
0.18
1 (2.55 10 2.83 10 ) (1.33 10 1.50 10 ) x 1 1 1 6 (1.12 10 1.12 10 ) H y 2 2 x x
(2.11 2.12)
x
1
2
1 2
9
3
0.23
1 (2.66 10 3.32 10 ) (1.39 10 1.76 10 ) x 1 1 1 9 (1.16 10 1.34 10 ) H y 2 2 x x 2 (4.66 10 2.38 10 ) (5.08 2.56 10 ) x 3 1 1 1 2
(2.19 2.53)
x
2
14
5
0.22
( 1.17 6.46) x
14 H y
1
2
3 ( 6.49 10 3.49 10 ) 2
2 (1.38 10 6.88 10 ) 2 2 x
4 (9.10 10 2.16 10 ) x 3 2
x x
1 2
1
2
35
5
0.23
7 ( 7.01 10 1.48 10 ) ( 2.93 10 2.36 10 ) x 1 2 1
1 (6.42 10 3.59) x 4 (3.46 10 1.51 10 ) x 3 2 2
35 H y
1
3 (3.28 10 1.94 10 ) 2
4 ( 1.35 10 1.27 10 ) x 3 2
x x
1 2
1
2
100
2
-0.02
4
2
3
4
4
4
100 1 2 (4.41 10 8.85 10 ) ( 2.43 10 4.92 10 ) ( 1.42 10 6.02 10 ) H y x x
Regression models for hardness values, H 3 5 3 Er y
1 x
0.89
43 1.57 10 1.09 10 1.68 10 1.15 10 4 2
2
1
2.09 6.24 10
x
2
1 1.45 10 3.23 10
1
1 4.45 10 3.04 10
1 2
1 2 ( 1.17 2.10 10 ) x
x x
x
1 2
1
2
6
3
0.33
3 (1.15 10 2.28 10 ) 6.03 1.21 (9.27 10 1.71 10 ) x x 2 1 1 1 2 (9.69 10 2.55 10 ) 5.09 1.35 (8.13 10 1.94 10 ) x x 2 1 1 1 6 (4.90 10 9.05 10 ) Er y (4.30 10 1.03 10 ) Er y 1 2 9 1 1 1 2 x x x x
2
0.28
9
3
2
1 2
Made with FlippingBook Ebook Creator