PSI - Issue 33

Niki Martini et al. / Procedia Structural Integrity 33 (2021) 295–303 Martini/ Structural Integrity Procedia 00 (2021) 000–000

301

7

and calcium carbonate kidney/uteric stones and atherosclerotic plaques’ calcifications. The experimental results indicated, for both kidney stones and atherosclerotic plaques, statistically significant difference for thicknesses of 0.7 mm or higher when hydroxyapatite was to be differentiated from calcium oxalate or calcium carbonate. Acknowledgements This research is co-financed by Greece and the European Union (European Social Fund-ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning 2014-2020» in the context of the project “Human body mineral characterization using Dual Energy X-ray method” (MIS 5050326). References Adamson, P.D., Vesey, A.T., Joshi, N.V., Newby, D.E., Dweck, M.R., 2015. Salt in the wound: 18F-fluoride positron emission tomography for identification of vulnerable coronary plaques. Cardiovasc Diagn Ther 5, 150–155. https://doi.org/10.3978/j.issn.2223-3652.2015.03.01 Alexander, R.T., Hemmelgarn, B.R., Wiebe, N., Bello, A., Samuel, S., Klarenbach, S.W., Curhan, G.C., Tonelli, M., Alberta Kidney Disease Network, 2014. Kidney stones and cardiovascular events: a cohort study. Clin J Am Soc Nephrol 9, 506–512. https://doi.org/10.2215/CJN.04960513 Arafa, A., Eshak, E.S., Iso, H., 2020. Oxalates, urinary stones and risk of cardiovascular diseases. Med Hypotheses 137, 109570. https://doi.org/10.1016/j.mehy.2020.109570 Aydin, H., Yencilek, F., Erihan, I.B., Okan, B., Sarica, K., 2011. Increased 10-year cardiovascular disease and mortality risk scores in asymptomatic patients with calcium oxalate urolithiasis. Urol Res 39, 451–458. https://doi.org/10.1007/s00240-011-0383-9 Bargagli, M., Tio, M.C., Waikar, S.S., Ferraro, P.M., 2020. Dietary Oxalate Intake and Kidney Outcomes. Nutrients 12, 2673. https://doi.org/10.3390/nu12092673 Basiri, A., Taheri, M., Taheri, F., 2012. What is the state of the stone analysis techniques in urolithiasis? Urol J 9, 445–454. Becker, A., Epple, M., Müller, K.M., Schmitz, I., 2004. A comparative study of clinically well-characterized human atherosclerotic plaques with histological, chemical, and ultrastructural methods. J Inorg Biochem 98, 2032–2038. https://doi.org/10.1016/j.jinorgbio.2004.09.006 Boone, J.M., Seibert, J.A., 1997. An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kV. Med Phys 24, 1661–1670. https://doi.org/10.1118/1.597953 Brandan, M.-E., Ramírez-R, V., 2006. Evaluation of dual-energy subtraction of digital mammography images under conditions found in a commercial unit. Phys Med Biol 51, 2307–2320. https://doi.org/10.1088/0031-9155/51/9/014 Büsing, C.M., Keppler, U., Menges, V., 1981. Differences in microcalcification in breast tumors. Virchows Arch. A Path. Anat. and Histol. 393, 307–313. https://doi.org/10.1007/BF00430830 Chen, S.-J., Chiu, K.-Y., Chen, H.-Y., Lin, W.-Y., Chen, Y.-H., Chen, W.-C., 2020. Animal Models for Studying Stone Disease. Diagnostics 10, 490. https://doi.org/10.3390/diagnostics10070490 Chen, W., Dilsizian, V., 2013. Targeted PET/CT imaging of vulnerable atherosclerotic plaques: microcalcification with sodium fluoride and inflammation with fluorodeoxyglucose. Curr Cardiol Rep 15, 364. https://doi.org/10.1007/s11886-013-0364-4 Coll, D.M., Varanelli, M.J., Smith, R.C., 2002. Relationship of spontaneous passage of ureteral calculi to stone size and location as revealed by unenhanced helical CT. AJR Am J Roentgenol 178, 101–103. https://doi.org/10.2214/ajr.178.1.1780101 Creager, M.D., Hohl, T., Hutcheson, J.D., Moss, A.J., Schlotter, F., Blaser, M.C., Park, M.-A., Lee, L.H., Singh, S.A., Alcaide-Corral, C.J., Tavares, A.A.S., Newby, D.E., Kijewski, M.F., Aikawa, M., Di Carli, M., Dweck, M.R., Aikawa, E., 2019. 18F-Fluoride Signal Amplification Identifies Microcalcifications Associated With Atherosclerotic Plaque Instability in Positron Emission Tomography/Computed Tomography Images. Circ Cardiovasc Imaging 12, e007835. https://doi.org/10.1161/CIRCIMAGING.118.007835 Daudon, M., Hennequin, C., Lacour, B., Le Moel, G., Donsimoni, R., Fellahi, S., Paris, M., Troupel, S., 1995. Sex- and age-related composition of 10 617 calculi analyzed by infrared spectroscopy. Urol. Res. 23, 319–326. https://doi.org/10.1007/BF00300021 Devarajan, A., 2018. Cross-talk between renal lithogenesis and atherosclerosis: an unveiled link between kidney stone formation and cardiovascular diseases. Clin Sci (Lond) 132, 615–626. https://doi.org/10.1042/CS20171574 Ding, H., Wang, C., Malkasian, S., Johnson, T., Molloi, S., 2021. Characterization of arterial plaque composition with dual energy computed tomography: a simulation study. Int J Cardiovasc Imaging 37, 331–341. https://doi.org/10.1007/s10554-020-01961-y Eliahou, R., Hidas, G., Duvdevani, M., Sosna, J., 2010. Determination of Renal Stone Composition with Dual-Energy Computed Tomography: An Emerging Application. Seminars in Ultrasound, CT and MRI, Dual-Source/Dual-Energy Computed Tomography 31, 315–320. https://doi.org/10.1053/j.sult.2010.05.002 Evan, A.P., Worcester, E.M., Coe, F.L., Williams, J., Lingeman, J.E., 2015. Mechanisms of human kidney stone formation. Urolithiasis 43, 19– 32. https://doi.org/10.1007/s00240-014-0701-0 Ferraro, P.M., Taylor, E.N., Eisner, B.H., Gambaro, G., Rimm, E.B., Mukamal, K.J., Curhan, G.C., 2013. History of kidney stones and risk of coronary heart disease. JAMA 310, 408–415. https://doi.org/10.1001/jama.2013.8780 Feuchtner, G.M., Barbieri, F., Langer, C., Beyer, C., Widmann, G., Friedrich, G.J., Cartes-Zumelzu, F., Plank, F., 2019. Non obstructive high risk plaque but not calcified by coronary CTA, and the G-score predict ischemia. Journal of Cardiovascular Computed Tomography 13, 305– 314. https://doi.org/10.1016/j.jcct.2019.01.010 Feuchtner, G.M., Barbieri, F., Langer, C., Beyer, C., Widmann, G., Friedrich, G.J., Cartes-Zumelzu, F., Plank, F., 2019. Non obstructive high risk plaque but not calcified by coronary CTA, and the G-score predict ischemia. Journal of Cardiovascular Computed Tomography 13, 305– 314. https://doi.org/10.1016/j.jcct.2019.01.010 Florea, A., Sigl, J.P., Morgenroth, A., Vogg, A., Sahnoun, S., Winz, O.H., Bucerius, J., Schurgers, L.J., Mottaghy, F.M., 2021. Sodium

Made with FlippingBook Ebook Creator