PSI - Issue 33

Riccardo Caivano et al. / Procedia Structural Integrity 33 (2021) 1095–1102 Riccardo Caivano et al./ Structural Integrity Procedia 00 (2019) 000–000

1101

7

References

[1] W.E. Frazier, Metal additive manufacturing: A review, J. Mater. Eng. Perform. 23 (2014) 1917–1928. https://doi.org/10.1007/s11665 014-0958-z. [2] H. Lee, C.H.J. Lim, M.J. Low, N. Tham, V.M. Murukeshan, Y.J. Kim, Lasers in additive manufacturing: A review, Int. J. Precis. Eng. Manuf. - Green Technol. 4 (2017) 307–322. https://doi.org/10.1007/s40684-017-0037-7. [3] M. Yakout, M.A. Elbestawi, S.C. Veldhuis, A review of metal additive manufacturing technologies, Solid State Phenom. 278 SSP (2018) 1–14. https://doi.org/10.4028/www.scientific.net/SSP.278.1. [4] I. Gibson, D. Rosen, B. Stucker, Additive Manufacturing Technologies, Springer, 2015. [5] S. Hällgren, L. Pejryd, J. Ekengren, (Re)Design for Additive Manufacturing, Procedia CIRP. 50 (2016) 246–251. https://doi.org/10.1016/j.procir.2016.04.150. [6] J. Plocher, A. Panesar, Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures, Mater. Des. 183 (2019). https://doi.org/10.1016/j.matdes.2019.108164. [7] R. Caivano, A. Tridello, M. Codegone, G. Chiandussi, A new methodology for thermostructural topology optimization: Analytical definition and validation, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. (2020). https://doi.org/10.1177/1464420720970246. [8] R. Caivano, A. Tridello, D. Paolino, G. Chiandussi, Topology and fibre orientation simultaneous optimisation: A design methodology for fibre-reinforced composite components, Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 234 (2020) 1267–1279. https://doi.org/10.1177/1464420720934142. [9] M. Benedetti, A. du Plessis, R.O. Ritchie, M. Dallago, S.M.J. Razavi, F. Berto, Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication, Mater. Sci. Eng. R Reports. 144 (2021) 100606. https://doi.org/10.1016/j.mser.2021.100606. [10] W. Wu, W. Hu, G. Qian, H. Liao, X. Xu, F. Berto, Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review, Mater. Des. 180 (2019) 107950. https://doi.org/10.1016/j.matdes.2019.107950. [11] M.P. Bendsøe, O. Sigmund, Topology Optimization: Theory, Methods and Applications, 2002. [12] O. Sigmund, K. Maute, Topology optimization approaches: A comparative review, Struct. Multidiscip. Optim. 48 (2013) 1031–1055. https://doi.org/10.1007/s00158-013-0978-6. [13] M.P. Bendsøe, O. Sigmund, Material interpolation schemes in topology optimization, Arch. Appl. Mech. (Ingenieur Arch. 69 (1999) 635–654. https://doi.org/10.1007/s004190050248. [14] E. Holmberg, B. Torstenfelt, A. Klarbring, Fatigue constrained topology optimization, Struct. Multidiscip. Optim. 50 (2014) 207–219. https://doi.org/10.1007/s00158-014-1054-6. [15] M. Collet, M. Bruggi, P. Duysinx, Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance, Struct. Multidiscip. Optim. 55 (2017) 839–855. https://doi.org/10.1007/s00158-016-1510-6. [16] L. Zhao, B. Xu, Y. Han, J. Xue, J. Rong, Structural topological optimization with dynamic fatigue constraints subject to dynamic random loads, Eng. Struct. 205 (2020) 110089. https://doi.org/10.1016/j.engstruct.2019.110089. [17] Z. Chen, K. Long, P. Wen, S. Nouman, Fatigue-resistance topology optimization of continuum structure by penalizing the cumulative fatigue damage, Adv. Eng. Softw. 150 (2020) 102924. https://doi.org/10.1016/j.advengsoft.2020.102924. [18] J. Oest, E. Lund, Topology optimization with finite-life fatigue constraints, Struct. Multidiscip. Optim. 56 (2017) 1045–1059. https://doi.org/10.1007/s00158-017-1701-9. [19] S.H. Jeong, J.W. Lee, G.H. Yoon, D.H. Choi, Topology optimization considering the fatigue constraint of variable amplitude load based on the equivalent static load approach, Appl. Math. Model. 56 (2018) 626–647. https://doi.org/10.1016/j.apm.2017.12.017. [20] K. Nabaki, J. Shen, X. Huang, Evolutionary topology optimization of continuum structures considering fatigue failure, Mater. Des. 166 (2019) 107586. https://doi.org/10.1016/j.matdes.2019.107586. [21] S. Zhang, C. Le, A.L. Gain, J.A. Norato, Fatigue-based topology optimization with non-proportional loads, Comput. Methods Appl. Mech. Eng. 345 (2019) 805–825. https://doi.org/10.1016/j.cma.2018.11.015. [22] S. Suresh, S.B. Lindström, C.J. Thore, B. Torstenfelt, A. Klarbring, Topology optimization using a continuous-time high-cycle fatigue model, Struct. Multidiscip. Optim. 61 (2020) 1011–1025. https://doi.org/10.1007/s00158-019-02400-w. [23] K. Sherif, W. Witteveen, K. Puchner, H. Irschik, Efficient topology optimization of large dynamic finite element systems using fatigue, AIAA J. 48 (2010) 1339–1347. https://doi.org/10.2514/1.45196. [24] S.H. Jeong, D.H. Choi, G.H. Yoon, Fatigue and static failure considerations using a topology optimization method, Appl. Math. Model. 39 (2015) 1137–1162. https://doi.org/10.1016/j.apm.2014.07.020. [25] J.W. Lee, G.H. Yoon, S.H. Jeong, Topology optimization considering fatigue life in the frequency domain, Comput. Math. with Appl. 70 (2015) 1852–1877. https://doi.org/10.1016/j.camwa.2015.08.006. [26] A. Tridello, J. Fiocchi, C.A. Biffi, G. Chiandussi, M. Rossetto, A. Tuissi, D.S. Paolino, Effect of microstructure, residual stresses and building orientation on the fatigue response up to 109 cycles of an SLM AlSi10Mg alloy, Int. J. Fatigue. 137 (2020) 105659. https://doi.org/10.1016/j.ijfatigue.2020.105659. [27] S. Leuders, T. Lieneke, S. Lammers, T. Tröster, T. Niendorf, On the fatigue properties of metals manufactured by selective laser melting - The role of ductility, J. Mater. Res. 29 (2014) 1911–1919. https://doi.org/10.1557/jmr.2014.157. [28] S. Beretta, S. Romano, A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes, Int. J. Fatigue. 94 (2017) 178–191. https://doi.org/10.1016/j.ijfatigue.2016.06.020. [29] S. Romano, A. Brückner-Foit, A. Brandão, J. Gumpinger, T. Ghidini, S. Beretta, Fatigue properties of AlSi10Mg obtained by additive manufacturing: Defect-based modelling and prediction of fatigue strength, Eng. Fract. Mech. 187 (2018) 165–189. https://doi.org/10.1016/j.engfracmech.2017.11.002. [30] Yukitaka Murakami, Metal Fatigue: Effects of Small Defects adn Nonmetallic Inclusions, Elsevier, 2002. https://doi.org/10.1016/B978 0-08-044064-4.X5000-2. [31] X. Gao, R. Caivano, A. Tridello, G. Chiandussi, H. Ma, D. Paolino, F. Berto, Innovative formulation for topological fatigue optimisation

Made with FlippingBook Ebook Creator