PSI - Issue 32
M.O. Levi et al. / Procedia Structural Integrity 32 (2021) 306–312 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
308
3
0 0 0 0 0 0 0 0 0 1,3 2,3 u u u
13 11 e e e e e e 12 12 11 0 0 0 23 c c c c c c c c c u u u 13 22 12 12 11 1,1 2,2 3,3 0 0 0 0 0 0 23 13 13 33
4,2 u u u 4,1
1,2
4,3
0 0 0
e e e
e e e
T T T T T T
11
12
6 5 4 3 2 1
12
11
13
13
0 0 0 0 0 0
45 c c c c 44
e e
45
34
(6)
44
34
0 0 0 0 0
0 0 0
e e c
e
e
66
16
16
0 0 0 0
12 11
D D D
16
12
3 2 1
16
11
0 0 0
34 e e
34
33
Similar relations for a material with a hexagonal system:
1,3 2,3 u u u
33 23 c c c c c c c c c u u u 13 22 12 12 11 1,1 2,2 3,3 0 0 0 23 13
4,2 u u u 4,1
1,2
4,3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
e e e
T T T T T T
31
6 5 4 3 2 1
32
33
0 0 0
0
c
e
44
24
(7)
0 0 0 0
0
0 0
c
e
44
15
0 0 0 0 0
0 0 0
c
66
0 0 0 0
0
0 0
e
D D D
15
11
3 2 1
32 e e e 31 0 0 0
0 0 0
0
e
24
22
0 0 0 0 0
33
33
There i k u , is apartial derivative of i u by k x . Also i,k u is a sum of partial derivatives: i k k i u u , , i,k u .
(8)
Let us consider the case of propagation of shear SH waves in a medium, then, taking into account the restrictions imposed on the propagation conditions SH ( 0 2 x , 0 1 u , 0 3 u ), the equations of motion for the layer ( n = 1) take the form:
e u e u c u c u e u e u (1) (1) 4,11 (1) 4,11 (1) 11 (1) 2,33 (1) 2,33 (1) 34 (1) 44 (1) 2,11 (1) 2,11 (1) (1) 66 16 (1) 34 (1) 16 u u 33
(1) 4,33
(1) 2
(1) 2
-
u
(9)
(1) 4,33
0
A similar equation for a half-space ( n = 2):
(2) 44 (2) 2,11 c u c u (2) 66
(2) 2,33
(2) 2 u
(2) 2
-
(10)
Considering that with such a spatial position the hexagonal structure becomes unconnected, we simplify the model by adding grounding at the interface and eliminating the electrical component of the equation of motion for the half-space.
Made with FlippingBook Online newsletter creator