PSI - Issue 32
V.A. Oborin et al. / Procedia Structural Integrity 32 (2021) 152–157 Author name / StructuralIntegrity Procedia 00 (2019) 000–000
157
6
Acknowledgements The reported study was funded in part by RFBR and Perm Territory projects № 20-41-596013 (experiments on shock- wave loading), № 19 -48-590009 (experiments on ultra-high cycle fatigue), and theoretical studies was supported by the Government Contract № АААА - А19 -119013090021-5. References Antoun, T., Seaman, L., Curran, D.R., Kanel, G.I., Razorenov, S.V., Utkin, A.V., 2003. Spall Fracture, 404. Bannikov, M.; Bilalov, D.; Oborin, V.; Naimark, O. Damage evolution in the AMg6 alloy during high and very high cycle fatigue. Frat. IntegritàStrutt. 2019, 13, 383–395, doi:10.3221/igf-esis.49.38. Bathias, C., Paris, P.C., 2005. Gigacycle Fatigue in Mechanical Practice. Marcel Dekker Publisher Co., 328. Bathias, C., 2006. Piezoelectric fatigue testing machines and devices. International Journal of Fatigue 28, 1438–1445. doi.org/10.1016/j.ijfatigue.2005.09.020. Cantrell, J.H., Yost, W.T., 2001. Nonlinear ultrasonic characterization of fatigue microstructures. International Journal of Fatigue 23, 487–490. doi.org/10.1016/S0142-1123(01)00162-1. Chen, Xi, 2005. Foreign object damage on the leading edge of a thin blade. Mechanics of Materials 37, 447–457. Froustey, C., Naimark, O., Bannikov, M., Oborin, V., 2010. Microstructure scaling properties and fatigue resistance of pre-strained aluminium alloys (part 1: AlCu alloy). European Journal of Mechanics A/Solids 29, 1008-1014. doi.org/10.1016/j.euromechsol.2010.07.005. Kumar, A., Adharapurapu, R.R., Jones, J.W., Pollock, T.M., 2011. In situ damage assessment in a cast magnesium alloy during very high cycle fatigue. Scr. Mater 64, 65–68. doi:10.1016/j.scriptamat.2010.09.008. Mughrabi, H., 2006. Specific features and mechanisms of fatigue in the ultrahigh-cycle regime. International Journal of Fatigue 28, 1501–1508. doi.org/10.1016/j.ijfatigue.2005.05.018. Nowell, D., Duó, P., Stewart, I.F., 2003. Prediction of fatigue performance in gas turbine blades after foreign object damage. Int. J. of Fatigue 25, 963-969. Oakley, S.Y., Nowell, D., 2007. Prediction of the combined high- and low-cycle fatigue performance of gas turbine blades after foreign object damage. Int. J. of Fatigue 29, 69–80. Oborin, V., Bayandin, Y., Savinykh, A., Garkushin, G., Razorenov, S., Naimark, O., 2018. Prediction of Aluminum Alloy (AlMg6) Life Time under Consecutive Shock-Wave and Gigacycle Fatigue Loads. AIP Conference Proceedings 2051(1), 020216-1-020216-4. doi.org/10.1063/1.5083459. Sakai, T., 2009. Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use. J. Solid Mech. Mater Engng 3(3), 425–39. doi.org/10.1299/jmmp.3.425. Spanrad, S., Tong, J., 2011. Characterisation of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti–6Al–4V aerofoil specimens. Materials Science and Engineering A 528, 2128–2136.
Made with FlippingBook Online newsletter creator