PSI - Issue 30
Nikolay I. Golikov et al. / Procedia Structural Integrity 30 (2020) 28–32 Nikolay I. Golikov / Structural Integrity Procedia 00 (2020) 000–000
32
5
the need to control residual welding stress and develop technologies aimed at reducing their influence to increase their reliability. Acknowledgments This work was supported by the Priority direction of the Basic Research Program of the State Academies of Sciences for 2013-2020 of Russia. In addition, the research was accomplished using equipment of the Shared core facilities of the Federal Research Center of the Yakutsk Science Center of the Siberian Branch of the Russian Academy of Sciences. References Bozic, Z., Schmauder, S., Wolf, H., 2018. The effect of residual stresses on fatigue crack propagation in welded stiffened panels. Engineering Failure Analysis 84, 346-357. Dong, P., Song, S., Pei, X., 2016. An IIW residual stress profile estimation scheme for girth welds in pressure vessel and piping components. Welding in the World 60, 283-298. Golikov, N.I., 2019. Effect of Residual Stress on the Destruction of Field Joints of Gas Pipelines Operating in Conditions of the North. Procedia Structural Integrity 20, 161–166. Gurova, T., Estefen, S.F., Leontiev, A., Barbosa, P.T., De Oliveira, F.A.L., 2017. Time-dependent redistribution behavior of residual stress after repair welding. Welding in the World 61, 507-515. Hemmesi, K., Farajian, M., Siegele, D., 2016. Numerical and experimental description of the welding residual stress field in tubular joints for fatigue assessment. Welding in the world 60, 741-748. Ivanov, V.V., Bol’shev, K.N., Alekseev, A.A., et.al., 2010. Metodika issledovaniya vetvleniya treshhiny pri nizkotemperaturnyh ispytaniyah [Investigation technique for crack branching during low-temperature field tests]. Nauchnoe priborostroenie [Scientific instrumentation], 20, 57-62. Launert, B., Rhode, M., Kromm, A., Pasternak, H., Kannengiesser, T., 2017. Measurement and numerical modeling of residual stresses in welded HSLA component-like I-girders. Welding in the World 61, 223-229. Nikolaev, G.A., 1979. Svarka v mashinostroenii: spravochnik [Welding in mechanical engineering: a reference book]. Vol.4, Publ. house Mashinostroenie, Moscow, pp. 512. Rozenshtein, I.M., 2015. K voprosu otsenki opasnosti khrupkogo razrusheniya rezervuarov dlya khraneniya nefteproduktov [On the issue of the oil product storage tank brittle fracture hazard analysis]. Territorija neftegas [Oil and gas territory],10, 110-114. Terada, H., 2005. Stress Intensity Factor Analysis and Fatigue Behavior of a Crack in the Residual Stress Field of Welding. Journal of ASTM International 5, 58-68. Ueda, Y., Murakawa, H., Ma, N., 2012. Welding deformation and residual stress prevention / Kidlington, Oxford: Butterworth-Heinemann, pp. 292. Vinokurov, V.A., 1973. Otpusk svarnyh konstrukcij dlja snizhenija naprjazhenij [Tempering of welded structures for the stress reduction]. Moscow, Publ. house Mashinostroenie, pp. 213. Vishnyakov, Ya.D., Piskarev, V.D., 1989. Upravlenie ostatochnymi napryazheniyami v metallah i splavah [Residual stress control in metals and alloys], Moscow: Metallurgiya. pp. 254.
Made with FlippingBook - professional solution for displaying marketing and sales documents online