PSI - Issue 3
Nataly Vaysfeld et al. / Procedia Structural Integrity 3 (2017) 526–544 Author name / Structur l Integrity Procedia 00 (2017) 000– 00
541
16
1
1 0
1 0
1 2
1 2
1
1 2
1 2
1 2
1 2
2
ln 1
1
1
1
1
ln ln 2 1 t dt t
ln 2
,
d t
t
t
dt
1
where x Euler Phi function. Thus, it is found
1 1 3 1 1, ; ; 1 2 2 1 z F z
1 2
z z
1
.
2
ln 2
L z
Let’s take here
1 z x . Then
1
1 1 3 1 1, ; ; 1 2 2 1 x F x
1 2
dt
x x
1
(31)
ln
2
ln 2
x t
2
1
t
1
and it leads from the obtained equality that for
0 n
1 2
1
ln 2
when
1 0 x . It can be seen there is no singularity here.
0 L x
After the differentiation of (31) one gets
1 1 3 1 2 1 2 2 1 3 x F x 1, ; ;
1 3 5 1 2, ; ; 1 2 2 1 x F x
x x
x x
2
2
2
1
1
.
1 L x
x
x
1 2
2 1
L x 1
Hence finally for
, if
1 0 x .
x
0 n
2
1 0 x . The equality (29) should be integrated along some curve
Let’s consider the case when
1 z with arbitrary point z
connecting point
1
z
z ds
1
1 2
1
1 2
1
2
2
1
1
1
1
.
s
s
ds
d
s
1
1
1
1 1
1 1
u u
Integral in left hand part with the change of variable
, where
, is calculated by the
s
u z z
analogous way
z
1
1 2
1 1 3 1 1, ; ; 1 2 2 1 z F z
z z
2
1
1
2
.
s
s
ds
1
1 z ds
ln 1 ln
, the integral in right hand part takes the form
With the fact that
z
s
1
1
1
z ds
1
1 2
1
1 2
1
1 2
2
2
2
ln 1
d
z d
1
1
1
1
1
1
ln
.
d
s
1
1
1
1
Let’s change variable
2 1 t of the first integral in the right hand part. Then
Made with FlippingBook - professional solution for displaying marketing and sales documents online