PSI - Issue 3
Nataly Vaysfeld et al. / Procedia Structural Integrity 3 (2017) 526–544 Author name / Structural Integrity Procedia 00 (2017) 000–000
539
14
This expression is symmetrical with respect to the and , t so this formula is true as
, t and as
t too.
Appendix B. The limit values of the integrals (25) Let’s find the limit values of the integrals (25) when
1 0 x . It simpler to provide all , . n P x Let’s use the equality
1 0 x and
reasoning for the integrals of a more common structure with Jacobi polynomials that leads from the formulas ( 10.8.19 and 10.8.20, Beitman et al (1974)) 1 , , 1 1 1 1 1 sin n n t t x x P t dt P x x t
(28)
n n 1 1
1
x
1;1 x
where
1, 1 ,
2
1, F n n
;1 ;
,
2
and , ; ; F a b c x Gauss hypergeometric function. Let’s integrate this integral by parts
dt
ln 1
u
du
x t
x t
1
t 1
t P t dt ,
dv t 1 1
t P t dt ,
ln 1 1
n
n
x t
1 1
1
1
1 1, 1 1 n P
t
1
v
t
t
2
n
1
1 1
1 1 n x t 2
1
1
1
1
t
1, 1 1
1, 1
ln
1
1
|
1
1
t
t
P
t
t
P
t dt
1
1
1
n
n
2
x t
n
1
1 1 1
1
n 1
1
x
x
1
x
x
1, 1
1
2
,
1; ;
.
P
F n n
1
n
2 sin 1 n n n It is seen from the result that the initial integral has final limits when
2
2
1 0 x and
1 0 x .
1 , 1 2 2 1 ! 3 n
n
!
n
1 , 1
Taking into account that n T x n
x
а
,
U x
P x
P
2 2
n
n
1
2
n
2
2
one gets
1 1
x
x U x 2 1 n 1
, ; ;
.
0 L x
F n n
2 2
n
n
1 n L x n 0
L x n
1 0 x and 0
when
when
This implies that
1 0. x
Let’s consider the integral 1 ln 1 1 1 t
1
t 1
1
t
,
d
t P t dt ,
P x dx
n
n
dx
x t
t x
1
1
x 1
n
1
1
x
1
x
, P x
2
1, F n n
;1 ;
.
n
sin n Taking into consideration equality (28), one should pass here from Jacobi’s polynomials to the Chebyshov’s polynomials. It gives 1 2 3 1 2 1,1 ; ; . 2 2 1 n T x x L x nF n n x 1 2
Made with FlippingBook - professional solution for displaying marketing and sales documents online