PSI - Issue 3
5
Nataly Vaysfeld et al. / Procedia Structural Integrity 3 (2017) 526–544 Author name / Structural Integrity Procedia 00 (2017) 000–000
530
0 0
dx
, t
1 1 2 2 2 J x J t x
,
(13)
k
x
k
dx
, t
1 1 2 2 2 J x J t x
(14)
,
k
x
k
where 1 J x is Bessel function. For the problem №1 with regard to the correspondences
xI x I x xI x xK x K x xK x ,
1
1
2
1
1
2
k
1 j j N k j cos
K
Hp
2
2 k
k
from the boundary conditions (9) one finds
.
A
I
t
t t dt
1
k
k
k
j
k G I
I
2
2
k j
For the problem №1 from the boundary conditions (10) one finds 2 2 2 2 1 2 cos j j N k k k k k k j k k k j Hp K K A I K t K G k k 1
1 k k j I t
t t dt
1 j j N k j j cos
k Hp I
I
k
k
K t K I
2
2 2
B
I
t
t t dt
k
2
1
2
1
k
k
k
k
k
j
k
k G k
K
where K One should substitute the found values of the integration constants in the corresponding equalities (11) and (12) and use the inversion formula (7). As a result, the expressions of the displacement will be constructed for Problem №1 2 2 2 2 . k k k k k I I
j
0
k k
N
I
2
1 2
H
x
t t dt J x J t x ch
1
,
sin
1
u
p
k
j
1
1
k
j
G
I
2
k
1
1
k
j
j
k k
1 j j N j k 1
K
x ch
x
2
2
sgn
1
sech
2
cos k j k sin k
xdx
j
j
I
2
1 k k j I t
(15)
I
t t dt
1
j
0
N
F
2
1 2
H
x
for Problem №2 u
t t dt J x J t x ch
k
(16)
,
sin
1
p
k
j
1
1
k
k
j
G
k
1
1
k
j
j
, k
1 j j N j k 1
N t
x
x
k
2
sgn
1
sech
2
cos k j k sin k
.
ch
xdx
t t dt
j
j
1 k k I
1 K
Here
F
K
I
k
2
2
k
k
K I I 2 2 1 k k k k
1 K t K
1 k k I
,
N t
t
2
k
Made with FlippingBook - professional solution for displaying marketing and sales documents online