PSI - Issue 28
H. Lutsenko et al. / Procedia Structural Integrity 28 (2020) 770–775 H. Lutsenko / Structural Integrity Procedia 00 (2020) 000–000
774
5
which represents components of vector y ( ζ ), then we can write down system in form
y ( ζ ) − P k y ( ζ ) = f ( ζ ) , ¯ h 0 < ζ < ¯ h 1
y ( ζ ) = y 0 ( ζ ) y 1 ( ζ ) y 2 ( ζ ) y 3 ( ζ )
, P k = µ − 1
, f ( ζ ) = a 1 µ −
0
1
0 0 0
0
0
∗ ν
2 c 0 0
, nk ( ζ )
2 − a 2
1 ∗ µ 0
1 ∗ α µ T
1 µ −
− a
(18)
1 ω
0
0 0
1 0
2 T
2 µ
2 − a 2
2 c
a − 1
nk ( ζ )
a 1 α µ ν
1 ω
1 µ 0 ν
∗ ν
Boundary functional and boundary conditions have form
U y ( ζ ) = Ay h 0 + By h 1 = − (1 − 2 µ ) γ 0 0 0
A =
, B = 0 a − 1 1 ν 0 0
, γ =
0 0 0 p nk − α µ T nk h 1
1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
(19)
2
0 0 − 1 0 0 0
a − 1 1 (1 − µ ) µ 0
2.1. Solution of vector-boundary problem
The solution of vector boundary problem was obtained by Green’s matrix method Popov G. Ya. (1999)
α µ µ ∗
h 1
y ( ζ ) =
G ( ζ, s ) f ( s ) ds − (1 − 2 µ ) Ψ ( ζ ) γ
(20)
h 0
where
G ( ζ, s ) = Φ ( ζ − s ) − Ψ ( ζ ) U Y ( Φ ( ζ − s )) Φ ( y ) = 3 j = 0 ∆ 3 − j d dy j ψ ( y ) , y = ζ − s Y ( ζ ) = 3 j = 0 ∆ 3 − j d dy j ψ ∗ ( y ) ψ ( y ) = λ 2 e −| y | λ 1 − λ 1 e −| y | λ 2 2 λ 1 λ 2 ( λ 2 1 − λ 2 2 ) , ψ ∗ ( y ) = λ 2 sinh λ 1 ζ − λ 1 sinh λ 2 ζ λ 1 λ 2 ( λ 2 1 − λ 2 2 )
(21)
k − λ 2 − a 2
k − λ
2 2 I , ∆ 3 = P 3 ∗ , λ 2 = ν
2 2 P k = λ 2
∆ 0 = I , ∆ 1 = P k , ∆ 2 = P 2
2 1 + λ
2 1 + λ
2 2 P − k
1
1 λ
λ 1 = ν
2 c µ − 1
2 − a 2
2 c
1 ω
1 ω
2.2. Deriving of exact solution of the original problem
Thus, displacement transformation W nk ( ζ )
W ( a 1 ρ, φ, a 1 ζ ) 2 G
W ( ρ, φ, ζ ) 2 G
u z ( r , φ, z ) =
(22)
=
Made with FlippingBook Ebook Creator