PSI - Issue 28
L.A. Igumnov et al. / Procedia Structural Integrity 28 (2020) 2086–2098 L.A. Igumnov, I.A. Volkov/ Structural Integrity Procedia 00 (2019) 000–000
2089
4
(13)
(0) ij c F S S C , 2 0 c c c ij
c .
S
c
ij
ij
ij
Accept that,
1
1
2 S S C C c c ij ij
0, , с
0
2 , 3
t
2
, с с С С Т ; с
c о dt ; c
c
(14)
;
.
;
с
c c ij ij e e
с
с
0
c
c
с
The evolution equation for the changes of coordinates of the center of the surface creep has the form:
(15)
1 c g e g , 2 c c c c c ij ij ij
where 1
c g and
2 c g > 0 is the experimentally determined material parameters.
The law of gradientless can be represented as:
c c ij ij S S C
c с
,
c
e
Т S
c с с ij с S
S
(16)
,
c
c
c
ij
ij
ij
С
с
where с for each of the three sections of the creep curve is defined as (Volkov I.A. et al. (2015)):
е
3 2
е
е
уст
с
с
/ 1
rc
(17)
,
,
.
III с с II
с
11 (1) 11 1 с е
I
с
II
(0)
(1)
11
11
с
с
е
(1)
с
3 2
c
11
11
11
с
In the final stages of the accumulation process observed effect of size of damage on the physico-mechanical properties of materials. This effect can be accounted for on the basis of the degrading of the continuum by the introduction of effective stresses:
G G
К К
F
F
i j
, (18)
,
4 1 / 4 3 G G K
1
i j
i j
i j
6 12
K G
2
1 1
(9 8 ) K G
1 , k ij
(19)
.
, k p c
F
k ij
The structure of the evolution equation of fatigue damage accumulation will be presented in the form:
W
1
p
p W W f W W
p
Z
exp( ) p p f k ,
p Z
p
r
(20)
,
,
,
1
f
Z
р
Z
a
p
p
p
p
p
1
r
p
f W W
p
p
a
p
a
р f – parameter function of volume stress state
where
p , p r ,
p k – are material parameters. - the intensity of the stress tensor;
u ;
1
t
p p W W dt the energy for the formation of scattered fatigue damage
u ij ij
2
0
in low cycle fatigue (LCF);
f p W – the value
p W at the time of formation of the macrocrack at LCF.
Made with FlippingBook Ebook Creator