PSI - Issue 28

Mor Mega et al. / Procedia Structural Integrity 28 (2020) 917–924 M. Mega and L. Banks-Sills / Structural Integrity Procedia 00 (2019) 000–000

924

8

References

[1] R. P. Taylor, Fibre composite aircraft: capability and safety, Tech. Rep. AR-2007-021, Australian Government-Australian Transport Safety Bureau, Autralia (2008). [2] ASTMD5528-13, Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites, in: Space Simulation; Aerospace and Aircraft; Composite Materials, Vol. 15.03, American Society for Testing and Materials, West Conshohocken, PA, 2013. [3] ISO 15024:2001(E), Fiber reinforced plastic composites - determination of mode I interlaminar fracture toughness, G Ic , for unidirectional rein forced materials, International Organization for Standardization, Switzerland, 2001. [4] ISO 15114:2014, Fiber reinforced plastic composites - determination of mode II fracture resistance for unidirectionally reinforced materials using the calibrated end-loaded split (C-ELS) test and an e ff ective crack length approach, International Organization for Standardization, Switzerland, 2014. [5] ASTM D7905 / D7905M-14, Standard test method for determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites, in: Space Simulation; Aerospace and Aircraft; Composite Materials, American Society for Testing and Materials, 2014. [6] ASTM D6671M-13, Standard test method for mixed mode I - mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites, in: Space Simulation; Aerospace and Aircraft; Composite Materials, Vol. 15.03, American Society for Testing and Materials, West Conshohocken, PA, 2014. [7] N. S. Choi, A. J. Kinloch, J. G. Williams, Delamination fracture of multidirectional carbon-fiber / epoxy composites under mode I, mode II and mixed-mode I / II loading, J. Compos. Mat. 33 (1999) 73–100. [8] B. R. K. Blackman, A. J. Kinloch, M. Paraschi, The determination of the mode II adhesive fracture resistance, G IIc , of structural adhesive joints: an e ff ective crack length approach, Eng. Fract. Mech. 72 (2005) 877–897. [9] B. R. K. Blackman, A. J. Brunner, J. G. Williams, Mode II fracture testing of composites: a new look at an old problem, Eng. Fract. Mech. 73 (2006) 2443–2455. [10] P. Davies, B. R. K. Blackman, A. J. Brunner, Standard test methods for delamination resistance of composite materials: current status, Appl. Compos. Mat. 5 (1998) 345–364. [11] P. Davies, G. D. Sims, B. R. K. Blackman, A. J. Brunner, K. Kageyama, M. Hojo, K. Tanaka, G. Murri, C. Rousseau, B. Gieseke, R. H. Martin, Comparison of test configurations for determination of mode II interlaminar fracture toughness results from international collaborative test programme, Plast. Rubber Compos. 28 (1999) 432–437. [12] A. J. Brunner, B. R. K. Blackman, P. Davies, A status report on delamination resistance testing of polymer–matrix composites, Eng. Fract. Mech. 75 (2008) 2779–2794. [13] B. R. K. Blackman, A. J. Kinloch, F. S. Rodriguez-Sanchez, W. S. Teo, The fracture behaviour of adhesively-bonded composite joints: e ff ects of rate of test and mode of loading, Int. J. Solids Struct. 49 (2012) 1434–1452. [14] M. Pe´rez-Galme´s, J. Renart, C. Sarrado, A. J. Brunner, A. Rodr´ıguez-Bellido, Towards a consensus on mode II adhesive fracture testing: Experi mental study, Theor. Appl. Fract. Mech. 98 (2018) 210–219. [15] J. G. Williams, On the calculation of energy release rates for cracked laminates, Int. J. Fract. 36 (1988) 101–119. [16] M. Mega, L. Banks-Sills, Mixed mode interface fracture toughness of a multi-directional composite - UD / woven pair, Theor. Appl. Fract. Mech. 104 (2019) 102323. [17] M. Mega, O. Dolev, L. Banks-Sills, Two and three - dimensional failure criteria for laminate composites, J. Appl. Mech. 87 (2020) 021001–1–11. [18] T. Chocron, L. Banks-Sills, Nearly mode I fracture toughness and fatigue delamination propagation in a multidirectional laminate fabricated by a wet-layup, Phys. Mesomech. 22 (2019) 107–140. [19] DaVis, Version 8.3, LaVision, Go¨ ttingen, Germany (2015). [20] S. Hashemi, A. J. Kinloch, J. M. Williams, The analysis of interlaminar fracture in uniaxial fibre-polymer composites, P. Roy. Soc. A-Math Phy. 427 (1990) 173–199. [21] Abaqus, Version 6.17, Dassault Syste`mes Simulia Corp. Johnston, RI (2017). [22] E. Farkash, L. Banks-Sills, Virtual crack closure technique for an interface crack between two transversely isotropic materials, Int. J. Fract. 205 (2017) 189–202. [23] W. S. Rasband, ImageJ, accessed: January, 2015. URL http: // imagej.nih.gov / ij / (1997-2014). [24] B. R. K. Blackman, M. Conroy, A. Ivankovic, A. Karac, A. J. Kinloch, J. G. Williams, Mode-mixity in beam-like geometries: linear elastic cases and local partitioning, in: 15 th European Conference on Composite Materials, Venice, Italy, 2012.

Made with FlippingBook Ebook Creator