PSI - Issue 28
Myroslava Hredil et al. / Procedia Structural Integrity 28 (2020) 1204–1211 8 Myroslava Hredil , Halyna Krechkovska, Oleksandra Student, Oleksandr Tsyrulnyk / Structural Integrity Procedia 00 (2019) 000–000
1211
Hredil, M.I., 2011. Role of disseminated damages in operational degradation of steels of the main gas conduits. Metallofizika i Noveishie Tekhnologii 33 (Spec. Iss.), 419–426. Hredil, M., Krechkovska, H., Student, O., Kurnat, I., 2019. Fractographic features of long term operated gas pipeline steels fracture under impact loading. Procedia Structural Integrity 21, 153–160. Hredil, M., Krechkovska, H., Tsyrulnyk, O., Student, O., 2020. Fatigue crack growth in operated gas pipeline steels. Procedia Structural Intedrity 26, 409–416. Kharchenko, E. V., Student, O. Z., Chumalo, H. V., 2017. Influence of the degradation of 17G1S steel on its properties after operation in the gas main. Materials Science 53(2), 207–215. Kosarevych, R. Ya., Student, O. Z., Svirs’ka, L. M., Rusyn, B. P., Nykyforchyn, H. M., 2013. Computer analysis of characteristic elements of fractographic images. Materials Science 48 (4), 474–481. Krasowsky, A. Y., Dolgiy, A. A., Torop, V. M., 2001. Charpy testing to estimate pipeline steel degradation after 30 years of operation. Proc. Charpy Centary Conference, Poitiers, France, 489–495. Krechkovs’ka, H. V., 2016. Fractographic signs of the mechanisms of transportation of hydrogen in structural steels. Materials Science 51 (4), 509– 513. Krechkovs’ka, H. V., Student, O. Z., 2017. Determination of the degree of degradation of steels of steam pipelines according to their impact toughness on specimens with different geometries of notches. Materials Science 52 (4), 566–571. Krechkovs’ka, H. V., Student, O. Z., Nykyforchyn, H. M., 2019. Diagnostics of the engineering state of steam pipelines of thermal power plants by the hardness and crack resistance of steel. Materials Science 54 (5), 627–637. Krechkovs’ka 1 , H. V., Tsyrul’nyk, O. T., Student, O. Z., 2019: In-service degradation of mechanical characteristics of pipe steels in gas mains. Strength of Materials 51(3), 406–417. Lee, H.-L., Chan, S. L.-I., 1991. Hydrogen embrittlement of AISI 4130 steel with an alternate ferrite/pearlite banded structure. Materials Science and Engineering A 142(2), 193–201. Nechaev, Yu. S., 2008. Complex physical problems of aging, embrittlement and destruction of metallic materials of hydrogen energy and gas pipelines. Advances in physical sciences 178, 709–726. [in Russian] Nykyforchyn, H. M., Student, O. Z., Dzioba, I. R., Stepanyuk, S. M., Markov, A. D., Onyshchak, Ya. D., 2004. Degradation of welded joints of steam pipelines of thermal electric power plants in hydrogenating media. Materials Science 40 (6), 836–843. Nykyforchyn, H. M., Student, O. Z., Krechkovs’ka, H. V., Markov, A. D., 2010. Evaluation of the influence of shutdowns of a technological process on changes in the in-service state of the metal of main steam pipelines of thermal power plants. Materials Science 46 (2), 177–189. Nykyforchyn, H., Krechkovska, H., Student, O., Zvirko, O., 2019. Feature of stress corrosion cracking of degraded gas pipeline steels. Procedia Structural Integrity 16, 153–160. Nykyforchyn 1 , H., Tsyrulnyk, O., Zvirko, O., Krechkovska H., 2019. Non-destructive evaluation of brittle fracture resistance of operated gas pipeline steel using electrochemical fracture surface analysis. Engineering Failure Analysis 104, 617–625. Romaniv, O.M., Nykyforchyn, H.M., Dzyuba, I.R., Student, O.Z., Lonyuk, B.P., 1998. Effect of damage in service of 12Kh1MF steam-pipe steel on its crack resistance characteristics. Materials Science 34 (1), 110–114. Student, O.Z., 1998. Accelerated method for hydrogen degradation of structural steel. Materials Science 34 (4), 497–507. Student, O.Z., Dudziński, W., Nykyforchyn, H.M., Kamińska, A., 1999. Effect of high-temperature degradation of heat-resistant steel on the mechanical and fractographic characteristics of fatigue crack growth. Materials Science 35(4), 499–508. Student, O. Z., Svirs’ka, L. M., Dzioba, I. R., 2012. Influence of the long-term operation of 12Kh1M1F steel from different zones of a bend of steam pipeline of a thermal power plant on its mechanical characteristics. Materials Science 48 (2), 239–246. Student 1 , O. Z., Krechkovs’ka, H. V., 2012. Anisotropy of the mechanical properties of degraded 15Kh1M1F steel after its operation in steam pipelines of thermal power plants. Materials Science 47 (5), 590–597. Student, О. Z., Krechkovs’ka, H. V., Palashchuk, T. E., Hladkyi, Ya. М., 2018. Influence of the long-term operation of 12Kh1МF steel of the bends of main steam pipelines of thermal power plants on its mechanical properties. Materials Science 53(4), 1–8. Student, O. Z., Krechkovs’ka, H. V., Nykyforchyn, H. M., Kurnat, I. M.: Fractographic criterion of attainment of the critical technical state by carbon steels. Materials Science 55(2), 160–167 (2019) Syromyatnikova, A. S., Gulyaeva, E. M., Alekseeva, K. I., 2016. Computational-experimental estimation of strength properties of the metal of long operating gas pipeline. Metal Science and Heat Treatment 58 (7–8), 61–65. Tau, L., Chan, S.L.I., 1996. Effects of ferrite pearlite alignment on the hydrogen permeation in a AISI 4130 steel. Materials Letters. 29(1–3), 143– 147. Zorin, A.E., Tolstov, A.E., 2017. The genesis of bundles in metal pipes: influence on danger of these defects and methods of identification. Problems of Gathering, Treatment and Transportation of Oil and Oil Products 6 (116), 110–118 (2017). [in Russian].
Made with FlippingBook Ebook Creator