PSI - Issue 28

M.R. Tyutin et al. / Procedia Structural Integrity 28 (2020) 2148–2156 TyutinM.R./ Structural Integrity Procedia 00 (2020) 000–000

2156

9

[9] L.R. Botvina, T.B. Petersen, On the similarity of acoustic and seismic regimes in fracture processes, Dokl. Phys. 46 (2001) 56–59. [10] L.R. Botvina, T.B. Petersen, N.A. Zharkova, M.R. Tyutin, V.G. Budueva, Acoustic properties of low-carbon steel at different stages of fracture, Deform. Fract. (Deformatsiya I Razrushenie Mater. (2005) 35–41. [11] L.R. Botvina, A.P. Soldatenkov, V.P. Levin, M.R. Tyutin, Y.A. Demina, T.B. Petersen, A.A. Dubov, N.A. Semashko, Assessment of mild steel damage characteristics by physical methods, Russ. Metall. 2016 (2016) 23–33. doi:10.1134/S0036029516010067. [12] T. Shiotani, J. Bisschop, J.G.M. Van Mier, Temporal and spatial development of drying shrinkage cracking in cement-based materials, Eng. Fract. Mech. 70 (2003) 1509–1525. doi:10.1016/S0013-7944(02)00150-9. [13] R.M. Bozorth, H.J. Williams, Effect of small stresses on magnetic properties, Rev. Mod. Phys. 17 (1945) 72–80. doi:10.1103/RevModPhys.17.72. [14] A.A. Dubov, A study of metal properties using the method of magnetic memory, Met. Sci. Heat Treat. 39 (1997) 401–405. doi:10.1007/BF02469065. [15] K. Yao, Z.D. Wang, B. Deng, K. Shen, Experimental Research on Metal Magnetic Memory Method, Exp. Mech. 52 (2012) 305–314. doi:10.1007/s11340-011-9490-3. [16] Z.D. Wang, Y. Gu, Y.S. Wang, A review of three magnetic NDT technologies, J. Magn. Magn. Mater. 324 (2012) 382–388. doi:10.1016/j.jmmm.2011.08.048. [17] H. Huang, S. Jiang, C. Yang, Z. Liu, Stress concentration impact on the magnetic memory signal of ferromagnetic structural steel, Nondestruct. Test. Eval. 29 (2014) 377–390. doi:10.1080/10589759.2014.949710. [18] G. Pengju, C. Xuedong, G. Weihe, C. Huayun, J. Heng, Effect of tensile stress on the variation of magnetic field of low-alloy steel, J. Magn. Magn. Mater. 323 (2011) 2474–2477. doi:10.1016/j.jmmm.2011.05.015. [19] L.R. Botvina, A.P. Soldatenkov, M.R. Tyutin, Y.A. Demina, V.P. Levin, T.B. Petersen, On interrelation of damage accumulation in structural steels and physical parameters estimated by methods of acoustic emission and metal magnetic memory, Russ. Metall. 2017 (2017) 10–17. doi:10.1134/S0036029517010037. [20] N. Kobayashi, S. Ueno, S. Nagai, M. Ochiai, N. Jimbo, Remote field eddy current testing for steam generator inspection of fast reactor, Nucl. Eng. Des. 241 (2011) 4643–4648. doi:10.1016/j.nucengdes.2011.03.054. [21] F.W. Spencer, Detection Reliability for Small Cracks Beneath Rivet Heads Using Eddy-Current Nondestructive Inspection Techniques, 1998. [22] N. Bowler, Eddy-Current Nondestructive Evaluation, Springer New York, New York, NY, 2019. doi:10.1007/978-1-4939-9629-2. [23] A. V. Makarov, E.S. Gorkunov, R.A. Savrai, L.K. Kogan, A.S. Yurovskikh, Y.M. Kolobylin, I.Y. Malygina, N.A. Davydova, The influence of a combined strain-heat treatment on the features of electromagnetic testing of fatigue degradation of quenched constructional steel, Russ. J. Nondestruct. Test. 49 (2013) 690–704. doi:10.1134/S1061830913120048. [24] E.S. Gorkunov, Y. V. Subachev, A.M. Povolotskaya, S.M. Zadvorkin, The influence of a preliminary plastic deformation on the behavior of the magnetic characteristics of high-strength controllably rolled pipe steel under an elastic uniaxial tension (Compression), Russ. J. Nondestruct. Test. 51 (2015) 563–572. doi:10.1134/S1061830915090053. [25] O. Gopkalo, G. Bezlyudko, V. Nekhotiashchiy, O. Gopkalo, Y. Kurash, Damage evaluation for AISI 304 steel under cyclic loading based on coercive force measurements, Int. J. Fatigue. 139 (2020) 105752. doi:10.1016/j.ijfatigue.2020.105752. [26] L. Piotrowski, M. Chmielewski, Z.L. Kowalewski, The Dominant Influence of Plastic Deformation Induced Residual Stress on the Barkhausen Effect Signal in Martensitic Steels, J. Nondestruct. Eval. 36 (2017) 10. doi:10.1007/s10921-016-0389-x. [27] E.S. Gorkunov, R.A. Savrai, A. V. Makarov, S.M. Zadvorkin, I.Y. Malygina, Magnetic inspection of fatigue degradation of a high carbon pearlitic steel, Russ. J. Nondestruct. Test. 47 (2011) 803–809. doi:10.1134/S1061830911120060. [28] X. Wang, J.-G. Chen, G. Su, H.-Y. Li, C. Wang, Plastic damage evolution in structural steel and its non-destructive evaluation, J. Mater. Res. Technol. 9 (2020) 1189–1199. doi:10.1016/j.jmrt.2019.11.046. [29] L.R. Botvina, M.R. Tyutin, V.P. Levin, A.V. Ioffe, Y.S. Perminova, D.V. Prosvirnin, Mechanical and physical properties, fracture mechanisms and residual strength of 15Cr2MnMoV steel used for oil well sucker rods, Deform. Fract. Mater. (In Russian) (2020, in press). [30] L.M. Rybakova, Mechanical regularities of metal destruction during volumetric and surface plastic deformation, J. Mach. Manuf. Reliab. (in Russian) 5 (1998) 113–123. [31] A.V. Berezin, A.I. Kozinkina, L.M. Rybakova, Acoustic emission and destruction of inelastically strained metal, Russ. J. Nondestruct. Test. 40 (2004) 152–156. doi:10.1023/B:RUNT.0000040172.94110.64. [32] V.V. Mishakin, V.A. Klyushnikov, A.V. Gonchar, M. Kachanov, On assessing damage in austenitic steel based on combination of the acoustic and eddy current monitoring, Int. J. Eng. Sci. 135 (2019) 17–22. doi:10.1016/j.ijengsci.2018.11.001.

Made with FlippingBook Ebook Creator