PSI - Issue 28
Available online at www.sciencedirect.com Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2019) 000–000
www.elsevier.com/locate/procedia
ScienceDirect
Procedia Structural Integrity 28 (2020) 53–60
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo © 2020 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo Keywords: low-alloy 42CrMo4 steel; material characterization; isotropic model;cyclic plasticity. 1st Virtual European Conference on Fracture Modeling the cyclic plasticity behavior of 42CrMo4 steel with an isotropic model calibrated on the whole shape of the evolution curve Jelena Srnec Novak a *, Marina Franulović b , Denis Benasciutti c , Francesco De Bona a a Polytechnic Department of Engineering and Architecture (DPIA), University of Udine, via delle Scienze 206, 33100 Udine, Italy b Faculty of Engineering, University of Rijeka, Croatia c Department of Engineering, University of Ferrara, via Saragat 1, 44122 Ferrara, Italy Abstract A durability analysis of a mechanical component generally requires accurate numerical simulations. For this purpose, the adopted cyclic plasticity material model should follow as closely as possible the material behavior observed during experimental testing. This work presents calibration of the isotropic material model for a 42CrMo4 steel, based on a series of cyclic fully-reversed tension-compression strain controlled tests performed at different strain amplitudes. Stress-strain cycles were recorded until end of each test with the goal to capture the isotropic stabilization effect of the material. As the isotropic model calibration gave poor results, if the exponential law proposed by Voce is adopted, an alternative Three parameters (TP) isotropic model is thus considered. The comparison with the experimental results show that the TP model fits significantly better the experimental results in almost all the considered cases. A possible justification of such improvement seems to be related to the fact that the equation governing the TP model contain a parameter that controls also the slope of the “S-shape curve” which describes the evolution of the material from initial to stabilized condition.
* Corresponding author. Tel.: +39-0432-558-297. E-mail address: jelena.srnec@uniud.it
2452-3216 © 2020 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo
2452-3216 © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo 10.1016/j.prostr.2020.10.007
Made with FlippingBook Ebook Creator