PSI - Issue 28

Saiaf Bin Rayhan et al. / Procedia Structural Integrity 28 (2020) 1892–1900 Author name / Structural Integrity Procedia 00 (2019) 000–000

1900

9

Huang, Z., 2001b. Micromechanical prediction of ultimate strength of transversely isotropic fibrous composites. International Journal of Solids and Structures, 38(22-23), pp.4147-4172. Lo Cascio, M., Milazzo, A. and Benedetti, I., 2020. Virtual element method for computational homogenization of composite and heterogeneous materials. Composite Structures, 232, p.111523. Luo, H. and Weng, G., 1987. On Eshelby's inclusion problem in a three-phase spherically concentric solid, and a modification of Mori-Tanaka's method. Mechanics of Materials, 6(4), pp.347-361. Michel, J., Moulinec, H. and Suquet, P., 1999. Effective properties of composite materials with periodic microstructure: a computational approach. Computer Methods in Applied Mechanics and Engineering, 172(1-4), pp.109-143. Mori, T. and Tanaka, K., 1973. Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metallurgica, 21(5), pp.571-574. Ogierman, W., 2019. HYBRID MORI-TANAKA/FINITE ELEMENT METHOD IN HOMOGENIZATION OF COMPOSITE MATERIALS WITH VARIOUS REINFORCEMENT SHAPE AND ORIENTATION. International Journal for Multiscale Computational Engineering, 17(3), pp.281-295. Otero, F., Oller, S., Martinez, X. and Salomón, O., 2015. Numerical homogenization for composite materials analysis. Comparison with other micro mechanical formulations. Composite Structures, 122, pp.405-416. Reuss, A., 1929. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM - Zeitschrift für Angewandte Mathematik und Mechanik, 9(1), pp.49-58. Rodrigues, D., Belinha, J., Pires, F., Dinis, L. and Jorge, R., 2018. Homogenization technique for heterogeneous composite materials using meshless methods. Engineering Analysis with Boundary Elements, 92, pp.73-89. Saeb, S., Steinmann, P. and Javili, A., 2016. Aspects of Computational Homogenization at Finite Deformations: A Unifying Review from Reuss' to Voigt's Bound. Applied Mechanics Reviews, 68(5). Sendeckyj, G., Wang, S., Steven Johnson, W., Stinchcomb, W. and Chamis, C., 1989. Mechanics of Composite Materials: Past, Present, and Future. Journal of Composites Technology and Research, 11(1), p.3. Sun, H., Di, S., Zhang, N. and Wu, C., 2001. Micromechanics of composite materials using multivariable finite element method and homogenization theory. International Journal of Solids and Structures, 38(17), pp.3007-3020. Voigt, W., 1889. Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper. Annalen der Physik, 274(12), pp.573-587. Xin, H., Mosallam, A., Liu, Y., Veljkovic, M. and He, J., 2019. Mechanical characterization of a unidirectional pultruded composite lamina using micromechanics and numerical homogenization. Construction and Building Materials, 216, pp.101-118. Yan, C., 2003. ON HOMOGENIZATION AND DE-HOMOGENIZATION OF COMPOSITE MATERIALS. Ph.D. Thesis. Drexel University, PA, USA. Younes, R., Hallal, A., Chehade, F. and Fardoun, F., 2012. Comparative Review Study on Elastic Properties Modeling for Unidirectional Composite Materials. INTECH Open Access Publisher.

Made with FlippingBook Ebook Creator