PSI - Issue 28

6

Saiaf Bin Rayhan et al. / Procedia Structural Integrity 28 (2020) 1892–1900 Author name / Structural Integrity Procedia 00 (2019) 000–0 0

1897

11 13 15 17 19 21

4,5 4,7 4,9 5,1 5,3 5,5 5,7 5,9 6,1 6,3 6,5

A.

B.

E 22 ,GPa

E 22 ,GPa

5 7 9

0

0 , 2

0 , 4

0 , 6

0 , 8

1

0

0 , 2

0 , 4

0 , 6

0 , 8

1

Fiber Volume Fraction, V f

Fiber Volume Fraction, V f

Exp.

Chamis

EAM

Exp. EAM M-T

Chamis Bridging

Bridging

M-T

S-C

Comsol FE. Sq. Ansys FE. Sq.

Comsol FE. Dm. Ansys FE. Dm.

Comsol FE. Hex. Ansys FE. Hex.

S-C

Comsol FE Sq./Dm./Hex.

Ansys FE. Sq./Dm./Hex.

Figure 3. A: Transversal Young’s Modulus (E 22 ), Carbon-Epoxy; B: Transversal Young’s Modulus (E 22 ), Polyethylene-Epoxy

5.3. In-plane shear modulus, G 12 For the calculation of in-plane shear modulus (G 12 ), Ansys Material Designer yields good agreement with the experiments along with Comsol FE predictions and bridging analytical model, Fig. 4 (A) and Fig. 4 (B). For the Carbon-Epoxy case, three RVEs used by the Material Designer to predict the results only differ when the fiber volume fraction is 0.7. For the same case, square-shaped RVE loses around 13% accuracy with experiments. For the Polyethylene-Epoxy case, outcomes due to different RVE shapes do not vary at all and the maximum difference with the experiment was found to be 4% when the fiber volume fraction reaches 0.6 and this trend continues for further fiber volume fraction cases.

2,1

25

A.

B.

2

20

1,9

15

1,8

G 12 ,GPa

G 12 ,GPa

10

1,7

5

1,6

1,5

0

0

0 , 2

0 , 4

0 , 6

0 , 8

1

0

0 , 2

0 , 4

0 , 6

0 , 8

1

Fiber Volume Fraction, V f

Fiber Volume Fraction, V f

Exp. EAM M-T

Chamis Bridging

Exp.

Chamis

EAM S-C

Bridging

M-T

S-C

Comsol FE. Sq. Ansys FE. Sq.

Comsol FE. Dm. Ansys FE. Dm.

Comsol FE. Hex. Ansys FE. Hex.

Comsol FE. (Sq./Dm./Hex.)

Ansys FE. (Sq./Dm./Hex.)

Figure 4. A: In-plane shear modulus (G 12 ), Carbon-Epoxy; B: In-plane shear modulus (G 12 ), Polyethylene-Epoxy

Made with FlippingBook Ebook Creator