PSI - Issue 28
6
Saiaf Bin Rayhan et al. / Procedia Structural Integrity 28 (2020) 1892–1900 Author name / Structural Integrity Procedia 00 (2019) 000–0 0
1897
11 13 15 17 19 21
4,5 4,7 4,9 5,1 5,3 5,5 5,7 5,9 6,1 6,3 6,5
A.
B.
E 22 ,GPa
E 22 ,GPa
5 7 9
0
0 , 2
0 , 4
0 , 6
0 , 8
1
0
0 , 2
0 , 4
0 , 6
0 , 8
1
Fiber Volume Fraction, V f
Fiber Volume Fraction, V f
Exp.
Chamis
EAM
Exp. EAM M-T
Chamis Bridging
Bridging
M-T
S-C
Comsol FE. Sq. Ansys FE. Sq.
Comsol FE. Dm. Ansys FE. Dm.
Comsol FE. Hex. Ansys FE. Hex.
S-C
Comsol FE Sq./Dm./Hex.
Ansys FE. Sq./Dm./Hex.
Figure 3. A: Transversal Young’s Modulus (E 22 ), Carbon-Epoxy; B: Transversal Young’s Modulus (E 22 ), Polyethylene-Epoxy
5.3. In-plane shear modulus, G 12 For the calculation of in-plane shear modulus (G 12 ), Ansys Material Designer yields good agreement with the experiments along with Comsol FE predictions and bridging analytical model, Fig. 4 (A) and Fig. 4 (B). For the Carbon-Epoxy case, three RVEs used by the Material Designer to predict the results only differ when the fiber volume fraction is 0.7. For the same case, square-shaped RVE loses around 13% accuracy with experiments. For the Polyethylene-Epoxy case, outcomes due to different RVE shapes do not vary at all and the maximum difference with the experiment was found to be 4% when the fiber volume fraction reaches 0.6 and this trend continues for further fiber volume fraction cases.
2,1
25
A.
B.
2
20
1,9
15
1,8
G 12 ,GPa
G 12 ,GPa
10
1,7
5
1,6
1,5
0
0
0 , 2
0 , 4
0 , 6
0 , 8
1
0
0 , 2
0 , 4
0 , 6
0 , 8
1
Fiber Volume Fraction, V f
Fiber Volume Fraction, V f
Exp. EAM M-T
Chamis Bridging
Exp.
Chamis
EAM S-C
Bridging
M-T
S-C
Comsol FE. Sq. Ansys FE. Sq.
Comsol FE. Dm. Ansys FE. Dm.
Comsol FE. Hex. Ansys FE. Hex.
Comsol FE. (Sq./Dm./Hex.)
Ansys FE. (Sq./Dm./Hex.)
Figure 4. A: In-plane shear modulus (G 12 ), Carbon-Epoxy; B: In-plane shear modulus (G 12 ), Polyethylene-Epoxy
Made with FlippingBook Ebook Creator