PSI - Issue 28
Available online at www.sciencedirect.com Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2019) 000–000
www.elsevier.com/locate/procedia
ScienceDirect
Procedia Structural Integrity 28 (2020) 591–601
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo assumed poor interlayer molecular diffusion. © 2020 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo Keywords: Additive manufacturing; 3D printing; Interface; Mechanical properties; Fracture, Groove, Geometry, Custom GCODE 1st Virtual European Conference on Fracture Fracture of 3D-printed micro-tensile specimens: filament-scale geometry-induced anisotropy James Allum, Andrew Gleadall*, Vadim V. Silberschmidt Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK. Abstract The interlayer interface was widely considered as the reason for anisotropic mechanical properties in 3D-printed parts produced by material extrusion additive manufacturing (MEAM). Still, the cause has remained widely debated. Utilising a specially developed micro-tensile specimen formed by single filaments, this study examines the roles of their orientation and filament-scale geometric features on mechanical performance. The specimens were loaded in two directions: (i) longitudinal (F), coinciding with the main axis of extruded filaments, and (ii) transverse (Z), normal to the interface between layers. To replicate the geometrical groove features found at the interlayer interfaces in Z specimens, some of the F specimens were scored manually perpendicular to the load prior to tensile testing to produce similar filament-scale features. Tensile testing of all specimens with microscopic characterisation showed that both F specimens (with and without manual grooves) and Z specimens shared very similar strength characteristics, close to those of bulk polylactide (PLA). Manually grooved F specimens demonstrated significantly reduced plasticity, strain at-fracture and load-bearing area - very close to the Z specimen’s characteristics indicating that the presence of natural grooves in Z specimens is the predominant cause of mechanical anisotropy in MEAM as opposed to commonly
* Corresponding author. E-mail address: a.gleadall@lboro.ac.uk.
2452-3216 © 2020 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo
2452-3216 © 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the European Structural Integrity Society (ESIS) ExCo 10.1016/j.prostr.2020.10.069
Made with FlippingBook Ebook Creator