PSI - Issue 26
Merdaci Slimane et al. / Procedia Structural Integrity 26 (2020) 35–45 Slimane et al. / Structural Integrity Procedia 00 (2020) 000 – 000
40
6
t
t
t
(14)
b b b b x y xy x y xy N N N N M M M M M M M M , , , , , , , , = = = s s s s x y xy
Where A ij , B ij , etc. are the plate stiffness defined by
h 2 /
(
)
(
)
2
ij ij , , A B D
1 z z Q dz , ,
i j 1 2 6 , , , =
=
ij
ij
h 2 /
−
(15)
h 2 /
(
)
(
)
s s s B D H , ,
2
f z z f z f z Q dz ( ), ( ), ( )
i j 1 2 6 , , , =
=
ij
ij
ij
ij
h 2 /
−
h 2 /
(
)
s ij A
2
(
)
g z Q dz ( )
,
i j 4 5 , , =
=
ij
h 2 /
−
6. Solutions for simply supported FG plates Rectangular plates are generally classified according to the type of support used. This paper is concerned with the exact solution for a simply supported FG plate. The following boundary conditions are imposed at the side edges:
w w y y
s = = = = = = = = b s v w w
(16a)
b x
N M M 0 and x 0 a , =
0
b
s
x
x
w w x x
s = = = = = = = = b s u w w
(16b)
b y
0 N M M 0 and y 0 b , , =
0
b
s
y
y
Substituting the expressions for δ U and δ K from Eqs.(9) and Eq.(11) into Eq.(8) , integrating the displacement gradients by parts and setting the coefficients δu, δv, δw b , and δw s zero separately. Thus, one can obtain the equilibrium equations associated with the present shear deformation theory,
x N N x y xy N N x y
b w w
(17a)
s
xy
δ u
1 0 2 Ι u Ι
I
:
+ = −
−
4
x
x
(17b)
b w w
s
y
δ v
1 0 2 Ι v Ι + = −
I
:
−
4
y
y
3 I
5 − I
(17c)
2 b M M 2 b
2 b M x
2
2
2
2
u v x y
b w w
s w w
b
s
xy
y
δ w
2
b s Ι w w I ( ) = + +
:
+
+
+ −
+
+
b
1
2
2
2
2
2
2
2
x y
x
y
x
y
x
y
5 I
6 − I
2 s M M 2 s
s
S
2 s M
s
2
2
2
2
S
u v x y
b w w
s w w
(17d)
b
s
xy
y
yz
x
xz + + = + + b s Ι w w I ( )
δ w
2
:
+
+
+ −
+
+
s
1
4
2
2
2
2
2
2
x y
x y
x
y
x
y
x
y
Following the Navier solution procedure, we assume the following form of solution for (u,v,w b ,w s ) that satisfies the boundary conditions given in Eq.16.
i ωt
λ x μ y λ x μ y λ x μ y λ x μ y ) sin( )cos( ) sin( ) sin(
cos( sin(
)
mn U e V e mn
s = u v w w
i ωt
)
(18)
i ωt
sin( sin(
)
bmn W e W e smn
b m 1 n 1 = =
i ωt
)
Made with FlippingBook - Share PDF online