PSI - Issue 26
Victor Rizov et al. / Procedia Structural Integrity 26 (2020) 86–96 Rizov / Structural Integrity Procedia 00 (2019) 000 – 000
90
5
g l m m − r gC
r
gF
m m
x
= +
g
,
(14)
g
gF
3
−
r
d l m m m m = + r dC dF d
x
dF
,
(15)
d
3
−
r
l l m m m m = + r lC lF l
x
lF
,
(16)
l
3
g l s s − q gC
q
gF
x
s s
gF = +
g
,
(17)
g
3
−
q
d l s s s s = + q dC dF d
x
dF
,
(18)
d
3
−
q
l l s s s s = + q lC l lF
x
lF
l
,
(19)
3
f
f
−
p
gC
gF
x
f
gF f = +
g
,
(20)
g
3
p
l
g
f
f
−
p
f
dF f = +
x
dC
dF
,
(21)
d
d
3
p
l
d
f
f
−
p
f
lF f = +
x
lC
lF
,
(22)
l
l
3
p
l
l
where
x l 3 0 .
(23)
lF m , gF s , dF s , lF s , gF f , dF f and lF f are the
dF K ,
lF K ,
dF m ,
gF K ,
gF m ,
In formulae (11) – (22),
d f and l f in the free end of the beam,
d K ,
l K ,
d m ,
l m , g s , d s , l s ,
g m ,
g f ,
g K ,
values of
g K , d K , l K , g m , d m , l m , g s , d s , l s , g f , d f and l f in the clamping are lC K , gC m , dC m , lC m , gC s , dC s , lC s , gC f , dC f and lC f . The distributions of lF m , gF s , dF s , lF s , g f , d f and l f in the longitudinal direction of the
respectively. The values of
dC K ,
gC K ,
denoted by
dF K ,
lF K ,
gF m , dF m ,
gF K ,
beam is controlled by g n , d n , l n , g r , d r , l r , g q , d q , l q , g p , d p and l p , respectively. In principle, the complementary strain energy density is equal to the area that supplements the area enclosed by the stress-strain curve to a rectangle. Thus, the complementary strain energy density in the lower crack arm is written as
L * 0 = −
u
u
.
(24)
L
0
Made with FlippingBook - Share PDF online