PSI - Issue 25

Pedro R. da Costa et al. / Procedia Structural Integrity 25 (2020) 445–453 Author name / Structural Integrity Procedia 00 (2019) 000–000

453

9

Bathias, Claude. 2006. “Piezoelectric Fatigue Testing Machines and Devices.” International Journal of Fatigue 28(11): 1438–45. Bathias, Claude, and Paul C. Paris. 2005. Gigacycle Fatigue in Mechanical Practice . ed. Marcel Dekker. Brugger, Chearles, Thierry Palin-Luc, Pierre Osmond, and Michel Blanc. 2016. “Gigacycle Fatigue Behavior of a Cast Aluminum Alloy under Biaxial Bending: Experiments with a New Piezoelectric Fatigue Testing Device.” Procedia Structural Integrity 2: 1179–80. http://dx.doi.org/10.1016/j.prostr.2016.06.150. Costa, Pedro et al. 2017. “New Specimen and Horn Design for Combined Tension and Torsion Ultrasonic Fatigue Testing in the Very High Cycle Fatigue Regime.” International Journal of Fatigue 103: 248–57. http://dx.doi.org/10.1016/j.ijfatigue.2017.05.022. Costa, Pedro R. et al. 2019. “Cruciform Specimens’ Experimental Analysis in Ultrasonic Fatigue Testing.” Fatigue and Fracture of Engineering Materials and Structures (April): 1–13. Dönges, B., Claus-Peter Fritzen, and Hans-Jürgen Christ. 2018. “Fatigue Mechanism and Its Modeling of an Austenitic-Ferritic Duplex Stainless Steel under HCF and VHCF Loading Conditions.” Fatigue of Materials at Very High Numbers of Loading Cycles : 111–31. Freitas, M. et al. 2014. “In-Plane Biaxial Fatigue Testing Machine Powered by Linear Iron-Core Motors.” In Application of Automation Technology in Fatigue and Fracture Testing and Analysis , 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 63–79. http://www.astm.org/doiLink.cgi?STP157120130078 (July 30, 2019). de Freitas, Manuel. 2017. “Multiaxial Fatigue: From Materials Testing to Life Prediction.” Theoretical and Applied Fracture Mechanics 92(May): 360–72. http://dx.doi.org/10.1016/j.tafmec.2017.05.008. Grigorescu, A. et al. 2018. “Fatigue Behaviour of Austenitic Stainless Steels in the VHCF Regime.” Fatigue of Materials at Very High Numbers of Loading Cycles : 49–71. Guennec, Benjamin et al. 2015. “Dislocation-Based Interpretation on the Effect of the Loading Frequency on the Fatigue Properties of JIS S15C Low Carbon Steel.” International Journal of Fatigue 70: 328–41. http://dx.doi.org/10.1016/j.ijfatigue.2014.10.006. Hilgendorff, P.-M. et al. 2018. “Simulation of the VHCF Deformation of Austenitic Stainless Steels and Its Effect on the Resonant Behaviour.” Fatigue of Materials at Very High Numbers of Loading Cycles : 73–94. Huang, Zhi Yong et al. 2016. “Effect of Stress Ratio on VHCF Behavior for a Compressor Blade Titanium Alloy.” International Journal of Fatigue 93: 232–37. http://dx.doi.org/10.1016/j.ijfatigue.2016.05.004. Kovacs, S., T. Beck, and L. Singheiser. 2013. “Influence of Mean Stresses on Fatigue Life and Damage of a Turbine Blade Steel in the VHCF Regime.” International Journal of Fatigue 49: 90–99. http://dx.doi.org/10.1016/j.ijfatigue.2012.12.012. Lage, Y. et al. 2014. “Automation in Strain and Temperature Control on VHCF with an Ultrasonic Testing Facility.” Application of Automation Technology in Fatigue and Fracture Testing and Analysis : 80–100. http://www.astm.org/doiLink.cgi?STP157120130079. Marines-Garcia, Israel, Jean Pierre Doucet, and Claude Bathias. 2007. “Development of a New Device to Perform Torsional Ultrasonic Fatigue Testing.” International Journal of Fatigue 29(9–11): 2094–2101. Mayer, H. et al. 2015. “Cyclic Torsion Very High Cycle Fatigue of VDSiCr Spring Steel at Different Load Ratios.” International Journal of Fatigue 70: 322–27. http://dx.doi.org/10.1016/j.ijfatigue.2014.10.007. Nikitin, A., C. Bathias, and T. Palin-Luc. 2015. “A New Piezoelectric Fatigue Testing Machine in Pure Torsion for Ultrasonic Gigacycle Fatigue Tests: Application to Forged and Extruded Titanium Alloys.” Fatigue and Fracture of Engineering Materials and Structures 38(11): 1294–1304. Nonaka, Isamu, Sota Setowaki, and Yuji Ichikawa. 2014. “Effect of Load Frequency on High Cycle Fatigue Strength of Bullet Train Axle Steel.” International Journal of Fatigue 60: 43–47. http://dx.doi.org/10.1016/j.ijfatigue.2013.08.020. Sander, Manuela, C. Stäcker, and T. Müller. 2018. “Experimental and Numerical Investigations on Crack Initiation and Crack Growth under Constant and Variable Amplitude Loadings in the VHCF Regime.” Fatigue of Materials at Very High Numbers of Loading Cycles : 273– 93. Soares, H., P. Costa, M. Freitas, and L. Reis. 2018. “Fatigue Life Assessment of a Railway Wheel Material under HCF and VHCF Conditions.” MATEC Web of Conferences 165: 09003. Tsutsumi, Noriko, Y. Murakami, and V. Doquet. 2009. “Effect of Test Frequency on Fatigue Strength of Low Carbon Steel.” Fatigue and Fracture of Engineering Materials and Structures 32(6): 473–83. Vieira, M., M. De Freitas, et al. 2016. “Development of a Very High Cycle Fatigue (VHCF) Multiaxial Testing Device.” Frattura ed Integrita Strutturale 10(37): 131–37. Vieira, M., L. Reis, M. Freitas, and A. Ribeiro. 2016. “Strain Measurements on Specimens Subjected to Biaxial Ultrasonic Fatigue Testing.” Theoretical and Applied Fracture Mechanics 85: 2–8.

Made with FlippingBook flipbook maker