PSI - Issue 25
Andronikos Loukidis et al. / Procedia Structural Integrity 25 (2020) 195–200
199
A. Loukidis et al. / Structural Integrity Procedia 00 (2019) 000–000 5 The present results of Fig.4 which have been found by studying the acoustic events a few moments before rupture obviously generalize the latter finding in the laboratory scale.
5. Conclusions In the present work, we showed that the study of the AE energy in natural time by means of the quantity κ 1 exhibits a behaviour similar to that observed for the order parameter of various equilibrium and non equilibrium critical systems. Hence, the present results advocate for the use of κ 1 as an order parameter for the AE that precedes rupture. References Bramwell, S.T., Christensen, K., Fortin, J.Y., Holdsworth, P.C.W., Jensen, H.J., Lise, S., López, J.M., Nicodemi, M., Pinton, J.F., Sellitto, M., 2000. Universal Fluctuations in Correlated Systems. Phys. Rev. Lett. 84, 3744–3747. doi:10.1103/ PhysRevLett.84.3744. Bramwell, S.T., Fortin, J.Y., Holdsworth, P.C.W., Peysson, S., Pinton, J.F., Portelli, B., Sellitto, M., 2001. Magnetic fluctuations in the classical xy model: The origin of an exponential tail in a complex system. Phys. Rev. E 63, 041106. doi:10.1103/ PhysRevE.63.041106. Bramwell, S.T., Holdsworth, P.C.W., Pinton, J.F., 1998. Universality of rare fluctuations in turbulence and critical phenomena. Nature (London) 396, 552–554. doi:10.1038/25083. Clusel, M., Fortin, J.Y., Holdsworth, P.C.W., 2004. Criterion for universality-class-independent critical fluctuations: Example of the two-dimensional Ising model. Phys. Rev. E 70, 046112. doi:10.1103/PhysRevE.70.046112. Holford, K.M., 2009. Acoustic emission in structural health monitoring, in: Damage Assessment of Structures VIII, Trans Tech Publications Ltd. pp. 15–28. doi:10.4028/www.scientific.net/KEM.413-414.15. Kourkoulis, S., D. Pasiou, E., Dakanali, I., Stavrakas, I., Triantis, D., 2018. Mechanical response of notched marble beams under bending versus acoustic emissions and electric activity. Journal of Theoretical and Applied Mechanics 56, 523. doi:10.15632/jtam-pl.56.2.523. Kourkoulis, S., Exadaktylos, G., Vardoulakis, I., 1999. U-notched dionysos-pentelicon marble beams in three point bending: The effect of nonlinearity, anisotropy and microstructure. International Journal of Fracture 98, 369–392. doi:10.1023/A: 1018614023542. Kourkoulis, S., Ganniari-Papageorgiou, E., Mentzini, M., 2010. Dionysos marble beams under bending: A contribution towards understanding the fracture of the Parthenon architraves. Engineering Geology 115, 246 – 256. doi:10.1016/j.enggeo.2009. 06.012. Loukidis, A., Pasiou, E.D., Sarlis, N.V., Triantis, D., 2019. Fracture analysis of typical construction materials in natural time. Physica A: Statistical Mechanics and its Applications , 123831doi:10.1016/j.physa.2019.123831. Markides, C., Pasiou, E., Kourkoulis, S., 2018. A preliminary study on the potentialities of the circular semi-ring test. Procedia Structural Integrity 9, 108 – 115. doi:10.1016/j.prostr.2018.06.018. Olami, Z., Feder, H.J.S., Christensen, K., 1992. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 68, 1244–1247. doi:10.1103/physrevlett.68.1244. Perdikatsis, V., Kritsotakis, K., Markopoulos, T., Laskaridis, K., 2006. Petrography, fabric and properties, in: Kourkoulis, S. (Ed.), Fracture and Failure of Natural Building Stones: Applications in the Restoration of Ancient Monuments, Springer Netherlands, Dordrecht. pp. 497–515. doi:10.1007/978-1-4020-5077-0_31. Rao, A., 1990. Acoustic emission and signal analysis. Defence Science Journal 40, 55–70. doi:10.14429/dsj.40.4450. Rao, M.V.M.S., Lakshmi, K.J.P., 2005. Analysis of b-value and improved b-value of acoustic emissions accompanying rock fracture. Current Science 89, 1577–1582. Sachse, W., Yamaguchi, K., Roget, J., 1991. Acoustic emission : current practice and future directions. ASTM International, West Conshohocken, PA. doi:10.1520/STP1077-EB. Sarlis, N., Skordas, E., Varotsos, P., 2011a. Similarity of fluctuations in systems exhibiting Self-Organized Criticality. EPL (Europhysics Letters) 96, 28006. doi:10.1209/0295-5075/96/28006. Sarlis, N., Skordas, E., Varotsos, P., 2011b. The change of the entropy in natural time under time-reversal in the Olami-Feder Christensen earthquake model. Tectonophysics 513, 49 – 53. doi:10.1016/j.tecto.2011.09.025. Sarlis, N.V., Christopoulos, S.R.G., 2012. Natural time analysis of the Centennial Earthquake Catalog. Chaos 22, 023123. doi:10.1063/1.4711374. Sarlis, N.V., Varotsos, P.A., Skordas, E.S., 2006. Flux avalanches in YBa 2 Cu 3 O 7 − x films and rice piles: Natural time domain analysis. Phys. Rev. B 73, 054504. doi:10.1103/PhysRevB.73.054504. Shiotani, T., 1994. Evaluation of progressive failure using ae sources and improved b-value on slope model tests. Progress in Acoustic Emission VII, JSNDI , 529–534.
Made with FlippingBook flipbook maker