PSI - Issue 25
E. Solfiti et al. / Procedia Structural Integrity 25 (2020) 420 – 429 E. Solfiti and F. Berto / Structural Integrity Procedia 00 (2019) 000–000
428
9
Balima, F., Pischedda, V., Le Floch, S., Bruˆ let, A., Lindner, P., Duclaux, L., San-Miguel, A., 2013. An in situ small angle neutron scattering study of expanded graphite under a uniaxial stress. Carbon 57, 460–469. doi: 10.1016/j.carbon.2013.02.019 . Bhattacharya, A., Hazra, A., Chatterjee, S., Sen, P., Laha, S., Basumallick, I., 2004. Expanded graphite as an electrode material for an alcohol fuel cell. Journal of Power Sources 136, 208–210. doi: 10.1016/j.jpowsour.2004.03.003 . Celzard, A., Mareˆche´, J.F., Furdin, G., 2005. Modelling of exfoliated graphite. volume 50. doi: 10.1016/j.pmatsci.2004.01.001 . Celzard, A., Schneider, S., Mareˆche´, J.F., 2002. Densification of expanded graphite. Carbon 40, 2185–2191. doi: 10.1016/S0008-6223(02) 00077-5 . Chen, P.H., Chung, D.D., 2012. Dynamic mechanical behavior of flexible graphite made from exfoliated graphite. Carbon 50, 283–289. URL: http://dx.doi.org/10.1016/j.carbon.2011.08.048 , doi: 10.1016/j.carbon.2011.08.048 . Chen, P.H., Chung, D.D., 2013. Viscoelastic behavior of the cell wall of exfoliated graphite. Carbon 61, 305–312. URL: http://dx.doi.org/ 10.1016/j.carbon.2013.05.009 , doi: 10.1016/j.carbon.2013.05.009 . Chen, P.H., Chung, D.D., 2014. Thermal and electrical conduction in the compaction direction of exfoliated graphite and their relation to the structure. Carbon 77, 538–550. URL: http://dx.doi.org/10.1016/j.carbon.2014.05.059 , doi: 10.1016/j.carbon.2014.05.059 . Chen, P.H., Chung, D.D., 2015. Elastomeric behavior of exfoliated graphite, as shown by instrumented indentation testing. Carbon 81, 505–513. URL: http://dx.doi.org/10.1016/j.carbon.2014.09.083 , doi: 10.1016/j.carbon.2014.09.083 . Chugh, R., Chung, D.D., 2002. Flexible graphite as a heating element. Carbon 40, 2285–2289. doi: 10.1016/S0008-6223(02)00141-0 . Chung, D.D., 1987. Exfoliation of graphite. Journal of Materials Science 22, 4190–4198. doi: 10.1007/BF01132008 . Chung, D.D., 2000. Flexible Graphite for Gasketing, Adsorption, Electromagnetic Interference Shielding, Vibration Damping, Electrochemical Applications, and Stress Sensing. Journal of Materials Engineering and Performance 9, 161–163. doi: 10.1361/105994900770346105 . Chung, D.D., 2012. Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50, 3342–3353. URL: http://dx.doi.org/10.1016/j.carbon.2012.01.031 , doi: 10.1016/j.carbon.2012.01.031 . Chung, D.D., 2014. Interface-derived extraordinary viscous behavior of exfoliated graphite. Carbon 68, 646–652. URL: http://dx.doi.org/ 10.1016/j.carbon.2013.11.045 , doi: 10.1016/j.carbon.2013.11.045 . Chung, D.D., 2015. A review of exfoliated graphite. Journal of Materials Science 51, 554–568. doi: 10.1007/s10853-015-9284-6 . Daumas, N., Herold, A., 1969. Relations between phase concept and reaction mechanics in graphite insertion compounds. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences Serie C 268, 373. Dowell, M., Howard, R., 1986. Tensile and compressive properties of flexible graphite foils. Carbon 24, 311–323. Gu, J., Leng, Y., Gao, Y., Liu, H., Kang, F., Shen, W., 2002. Fracture mechanism of flexible graphite sheets. Carbon 40, 2169–2176. doi: 10.1016/ S0008-6223(02)00075-1 . Gu, J.L., Leng, Y., Gao, Y., Kang, F.Y., Shen, W.C., 1985. Microstructure e ff ect on mechanical properties of flexible graphite sheet. Engineering Fracture Mechanics , 658–659. Ionov, S.G., Avdeev, V.V., Kuvshinnikov, S.V., Pavlova, E.P., 2000. Physical and chemical properties of flexible graphite foils. Molecular Crystals and Liquid Crystals Science and Technology Section A: Molecular Crystals and Liquid Crystals 340, 349–354. doi: 10.1080/ 10587250008025491 . Jenkins, G.M., 1962. Analysis of the stress-strain relationships in reactor grade graphite. British Journal of Applied Physics 13, 30–32. URL: https://doi.org/10.1088%2F0508-3443%2F13%2F1%2F307 , doi: 10.1088/0508-3443/13/1/307 . Khelifa, M., Fierro, V., Macutkevicˇ, J., Celzard, A., 2018. Nanoindentation of flexible graphite: experimental versus simulation studies. Advanced materials science , 1–11. Ko, Y.S., Oh, W.C., . Some Useful Application of Expanded Graphite : Review. Journal of Multifunctional Materials and Photoscience , 85–96. Kobayashi, M., Toda, H., Takeuchi, A., Uesugi, K., Suzuki, Y., 2012. Three-dimensional evaluation of the compression and recovery behavior in a flexible graphite sheet by synchrotron radiation microtomography. Materials Characterization 69, 52–62. URL: http://dx.doi.org/10. 1016/j.matchar.2012.04.008 , doi: 10.1016/j.matchar.2012.04.008 . Krzesin´ska, M., Celzard, A., Mareˆche´, J.F., Puricelli, S., 2001. Elastic properties of anisotropic monolithic samples of compressed expanded graphite studied with ultrasounds. Journal of Materials Research 16, 606–614. doi: 10.1557/JMR.2001.0087 . Leng, Y., Gu, J., Cao, W., Zhang, T.Y., 1998. Influences of density and flake size on the mechanical properties of flexible graphite. Carbon 36, 875–881. doi: 10.1016/S0008-6223(97)00196-6 . Luo, X., Chugh, R., Biller, B.C., Hoi, Y.M., Chung, D.D., 2002. Electronic applications of flexible graphite. Journal of Electronic Materials 31, 535–544. doi: 10.1007/s11664-002-0111-x . Luo, X., Chung, D.D., 2000. Vibration damping using flexible graphite. Carbon 38, 1510–1512. doi: 10.1016/S0008-6223(00)00111-1 . Marotta, E.E., Mazzuca, S.J., Norley, J., 2005. Thermal joint conductance for flexible graphite materials: Analytical and experimental study. IEEE Transactions on Components and Packaging Technologies 28, 102–110. doi: 10.1109/TCAPT.2004.843153 . Mo, Y.L., Tian, Y.X., Liu, Y.H., Chen, F., Fu, Q., 2019. Preparation and Properties of Ultrathin Flexible Expanded Graphite Film via Adding Natural Rubber. Chinese Journal of Polymer Science (English Edition) 37, 806–814. doi: 10.1007/s10118-019-2264-6 . Pierson, H., 1994. H.O.pierson - Handbook of Carbon, Graphite, Diamond and Fullerenes. Noyes Publications URL: http://www.scribd.com/ doc/8968836/H-O-pierson-Handbook-of-Carbon-Graphite-Diamond-and-Fullerenes . Reynolds, R.A., Greinke, R.A., 2001. Influence of expansion volume of intercalated graphite on tensile properties of flexible graphite. Carbon 39, 479–481. doi: 10.1016/S0008-6223(00)00291-8 . Savchenko, D.V., Serdan, A.A., Morozov, V.A., van Tendeloo, G., Ionov, S.G., 2012. Improvement of the oxidation stability and the mechanical properties of flexible graphite foil by boron oxide impregnation. Xinxing Tan Cailiao / New Carbon Materials 27, 12–18. URL: http://dx. doi.org/10.1016/S1872-5805(12)60001-8 , doi: 10.1016/S1872-5805(12)60001-8 . Shane, J.H., Russell, R.J., Bochman, R.A., 1968. Flexible graphite material of expanded particles compressed together US Patent 3,404,061. Song, Y.T., Yao, D.M., Wu, S.T., Weng, P.D., 2005. Thermal and mechanical analysis of the EAST plasma facing components. Fusion Engineering
Made with FlippingBook flipbook maker