PSI - Issue 23
Krzysztof Kluger et al. / Procedia Structural Integrity 23 (2019) 89–94 Author name / Structural Integrity Procedia 00 (2019) 000 – 000
94
6
5. Conclusions On the basis of the analyses carried out the following conclusions can be drawn:
The method for the calculation of lifetime with the life dependent material parameters substantially improves the conformity of experimental with computed fatigue life for all the analyzed models under the proportional cyclic loading for 355 steel. The best conformity of experimental with computed fatigue lives was obtained for the Carpinteri-Spagnoli model for which 95% of results is located within the fatigue scatter band with the value equal to 2.1.
Acknowledgements
The publication was financed from a Grant by National Science Centre, Poland (Decision No. 2017/25/B/ST8/00684)
References Anes, V., Reis, L., Li, B., & de Freitas, M. 2014. New approach to evaluate non-proportionality in multiaxial loading conditions: Non Proportionality in multiaxial fatigue. Fatigue & Fracture of Engineering Materials & Structures, 37(12), 1338 – 1354. ASTM E739-91. 1998. Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life Fatigue Data. ASTM International, West Conshohocken, PA, 03.01. Bathias, C. 1999. There is no infinite fatigue life in metallic materials. Fatigue and Fracture of Engineering Materials and Structures, 22(7), 559 – 565. Carpinteri, A., Vantadori, S., Lagoda, T., Karolczuk, A., Kurek, M., & Ronchei, C. 2018. Fatigue assessment of metallic components under uniaxial and multiaxial variable amplitude loading. Fatigue and Fracture of Engineering Materials and Structures, 41(September 2017), 1306 – 1317. Carpinteri, Andrea, & Spagnoli, A. 2001. Multiaxial high-cycle fatigue criterion for hard metals. International Journal of Fatigue, 23(2), 135 – 145. Carpinteri, Andrea, Spagnoli, A., Vantadori, S., & Bagni, C. 2013. Structural integrity assessment of metallic components under multiaxial fatigue: The C-S criterion and its evolution. Fatigue and Fracture of Engineering Materials and Structures, 36(9), 870 – 883. Ellyin, F. 1997. Fatigue failure under multiaxial states of stress. In: Fatigue Damage, Crack Growth and Life Prediction. p. 484. Dordrecht: Springer. Findley, W. N., Coleman, J. J., & Hanley, B. C. 1956. Theory for combined bending and torsion fatigue with data for SAE 4340 steel. London: Instn mech. Engrs. Karolczuk, A., & Kluger, K. 2014. Analysis of the coefficient of normal stress effect in chosen multiaxial fatigue criteria. Theoretical and Applied Fracture Mechanics, 73, 39 – 47. Karolczuk, A., Kluger, K., & Łagoda, T. 2016. A correction in the algorithm of fatigue life calculation based on the critical plane approach. International Journal of Fatigue, 83, 174 – 183. Karolczuk, A., & Macha, E. 2005. Critical planes in multiaxial fatigue. J. Pokluda (Ed.),Materials Structure & Micromechanics of Fracture Iv. Vol. 482 Dusseldorf: Trans Tech Publications Ltd: p. 204. Karolczuk, A., & Macha, E. 2008. Selection of the critical plane orientation in two-parameter multiaxial fatigue failure criterion under combined bending and torsion. Engineering Fracture Mechanics, 75(3 – 4), 389 – 403. Karolczuk, A., Nadot, Y., & Dragon, A. 2008. Non-local stress gradient approach for multiaxial fatigue of defective material. Computational Materials Science, 44(2), 464 – 475. Karolczuk, A., Skibicki, D., & Pejkowski, Ł. 2019. Evaluation of the Fatemi -Socie damage parameter for the fatigue life calculation with application of the Chaboche plasticity model. Fatigue & Fracture of Engineering Materials & Structures, 42, 197 – 208. Kluger, K., & Lagoda, T. 2017. A new algorithm for estimating fatigue life under mean value of stress. Fatigue & Fracture of Engineering Materials & Structures, 40(3), 448 – 459. Kluger, Krzysztof, & Łagoda, T. 2018. Modification of the algorithm for calculating fatigue life for the criteria based on th e concept of the critical plane. Journal of Theoretical and Applied Mechanics, 56(1), 191 – 201. Lu, C., Melendez, J., & Martínez -Esnaola, J. M. 2018a. A universally applicable multiaxial fatigue criterion in 2D cyclic loading. International Journal of Fatigue. Lu, C., Melendez, J., & Martínez -Esnaola, J. M. 2018b. Modelling multiaxial fatigue with a new combination of critical plane definition and energy-based criterion. International Journal of Fatigue, 108(October 2017), 109 – 115. Papuga, J., & Ruzicka, M. 2008. Two new multiaxial criteria for high cycle fatigue computation. International Journal of Fatigue, 30(1), 58 – 66. Sahadi, J. V., Paynter, R. J. H., Nowell, D., Pattison, S. J., & Fox, N. 2017. Comparison of multiaxial fatigue parameters using biaxial tests of Waspaloy. International Journal of Fatigue, 100, 477 – 488. Slámečka, K., Pokluda, J., Kianicová, M., Horníková, J., & Obrtlík, K. 2013. Fatigue life of cast Inconel 713LC with/without protective diffusion coating under bending, torsion and their combination. Engineering Fracture Mechanics, 110, 459 – 467. Svärd, H. 2015. A branch and bound algorithm for evaluati on of the Findley fatigue criterion. International Journal of Fatigue, 73, 27 – 38. Matake, T. 1977. An Explanation on Fatigue Limit under Combined Stress. Bulletin of JSME, 20(141), 257 – 263. Miller, K. J., & O’Donnell, W. J. 1999. The fatigue limit and its elimination. Fat Fract Eng Mat Struct, 22, 547 – 57.
Made with FlippingBook - Online Brochure Maker